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Abstract——Mammalian ATP-gated nonselective cat-
ion channels (P2XRs) can be composed of seven possible
subunits, denoted P2X1 to P2X7. Each subunit contains
a large ectodomain, two transmembrane domains, and
intracellular N and C termini. Functional P2XRs are
organized as homomeric and heteromeric trimers.
This review focuses on the binding sites involved in
the activation (orthosteric) and regulation (allosteric)
of P2XRs. The ectodomains contain three ATP binding
sites, presumably located between neighboring sub-
units and formed by highly conserved residues. The
detection and coordination of three ATP phosphate
residues by positively charged amino acids are likely
to play a dominant role in determining agonist po-
tency, whereas an AsnPheArg motif may contribute to
binding by coordinating the adenine ring. Noncon-
served ectodomain histidines provide the binding
sites for trace metals, divalent cations, and protons.

The transmembrane domains account not only for the
formation of the channel pore but also for the binding
of ivermectin (a specific P2X4R allosteric regulator)
and alcohols. The N- and C- domains provide the struc-
tures that determine the kinetics of receptor desensi-
tization and/or pore dilation and are critical for the
regulation of receptor functions by intracellular mes-
sengers, kinases, reactive oxygen species and mer-
cury. The recent publication of the crystal structure of
the zebrafish P2X4.1R in a closed state provides a ma-
jor advance in the understanding of this family of
receptor channels. We will discuss data obtained from
numerous site-directed mutagenesis experiments ac-
cumulated during the last 15 years with reference to
the crystal structure, allowing a structural interpreta-
tion of the molecular basis of orthosteric and alloste-
ric ligand actions.

I. Introduction

The potential relevance of extracellular ATP in syn-
aptic transmission was originally introduced in 1972

(Burnstock, 1972) but was received with skepticism un-
til the first receptor was cloned in 1993 (Webb et al.,
1993). It is now well established that there are two
families of receptors activated by extracellular nucleo-

1Abbreviations: A317491, 5-[[[(3-phenoxyphenyl)methyl][(1S)-1,
2,3,4-tetrahydro-1-naphthalenyl]amino]carbonyl]-1,2,4-benzenetricar-
boxylic acid sodium salt hydrate; A438079, 3-[[5-(2,3-dichlorophenyl)-
1H-tetrazol-1-yl]methyl]pyridine hydrochloride; A740003, N-(1-([(cyano-
imino)(5-quinolinylamino) methyl] amino)-2,2-dimethylpropyl)-2-(3,
4-dimethoxyphenyl)acetamide; A804598, 2-cyano-1-[(1S)-1-phenylethyl]-3-
quinolin-5-ylguanidine; ApnA, diadenosine polyphosphate (where n � the
number of phosphates); AR, adenosine receptor; ATP�S, adenosine-5�-O-
(3-thiotriphosphate); AZ10606120, N-[2-[[2-[(2-hydroxyethyl)amino]ethyl]
amino]-5-quinolinyl]-2-tricyclo[3.3.1.13,7]dec-1-ylacetamide dihydrochlo-
ride; AZ11645373, 3-[1-[[(3�-nitro[1,1�-biphenyl]-4-yl)oxy]methyl]-3-(4-
pyridinyl)propyl]-2,4-thiazolidinedione; BBG, Coomassie brilliant blue G;
BzATP, 2�(3�)-O-4-benzoylbenzoyl)-ATP; CaM, calmodulin; DRG, dorsal
root ganglion; GW791343, N2-(3,4-difluorophenyl)-N1-((2-methyl-5-(1-
piperazinylmethyl)phenyl)glycinamide dihydrochloride; h, human; HEK,
human embryonic kidney; IpnI, diinosine polyphosphate (where n � the
number of phosphates); IVM, ivermectin; KN-62, 1-[N,O-bis(5-isoquino-
linesulfonyl)-N-methyl-L-tyrosyl]-4-phenylpiperazine; LPC, lysophosphati-
dylcholine; LPS, lipopolysaccharide; m, mouse; meATP, methylene-ATP;
2-meSATP, 2-methylthio-ATP; MG50-3-1, 1-amino-4-(4-(4-chloro-6-(2-
sulfonatophenylamino)-(1,3,5)triazine-2-ylamino]-2-sulfonatophenyl-
amino)-9,10-dioxo-9,10-dihydroanthracene-2-sulfonic acid trisodium salt;
MK3, ortho-(2,2�,2�,2�-(carbonylbis(imino-5,1,3-benzenetriylbis (carbon-
ylimino)))tetrakis-benzenesulfonic acid; MRS2159, 4-[(4-formyl-5-hydroxy-
6-methyl-3-[(phosphonooxy)methyl}-2-pyridinyl)azo]-benzoic acid;
MRS2219, 1,5-dihydro-3-hydroxy-8-methyl[1,3,2]dioxaphosphepino[5,6-
c]pyridin-9-ol-3-oxide; MRS2220, 6-azophenyl-2�,5�-disulfonate derivative;
MRS2257, pyridoxal-5�-phosphate-6-azophenyl-3�,5�-bimethylenphospho-
nate; MRS2339, 1�S,2R,3S,4�R,5�S)-4-(6-amino-2-chloro-9H-purin-9-yl)-1-
[phosphoryloxymethyl] bicycle[3.1.0]hexane-2,3-diol; NF023, 8,
8�-[carbonylbis(imino-3,1-phenylenecarbonylimino)]bis-1,3,5-naphthalene-

trisulfonic acid; NF110, 4,4�,4�,4�-[carbonylbis[imino-5,1,3-benzenetriyl-
bis(carbonylimino)]]tetrakisbenzenesulfonic acid tetrasodium salt; NF279,
8,8�-[carbonylbis(imino-4,1-phenylenecarbonylimino-4,1-phenylenecar-
bonylimino)]bis-1,3,5-naphthalenetrisulfonic acid; NF449, 4,4�,4�,4�-
[carbonylbis(imino-5,1,3-benzenetriyl-bis(carbonylimino))]tetrakis-1,
3-benzenedisulfonic acid; NF770, 7,7�-(carbonylbis(imino-3,1-phenylene-
carbonylimino-3,1-(4-methyl-phenylene)carbonylimino))bis(1-methoxy-
naphthalene-3,6-disulfonic acid) tetrasodium salt; NF776, 6,
6�-(carbonylbis(imino-3,1-(4-methylphenylene)carbonylimino))bis(1-
methoxynaphthalene-3,5-disulfonic acid) tetrasodium salt; NF778, 6,6�-
(carbonylbis(imino-3,1-phenylenecarbonylimino-3,1-(4-methyl-phenylene)
carbonylimino))bis(1-methoxy-naphthalene-3,5-disulfonic acid) tetra-
sodium salt; NF864, 8,8�,8�,8�-(carbonylbis(imino-5,1,3-benzenetriyl-
bis(carbonylimino)))tetrakis-naphthalene-1,3,5-trisulfonic acid-dodecaso-
dium salt; P2XRs, purinergic P2X cation-conducting receptor channels;
P2YRs, G protein-coupled P2Y receptors; PIP2, phosphatidylinositol-4,5-
bisphosphate; PKA, protein kinase A; PKC, protein kinase C; PPADS,
pyridoxal 5-phosphate 6-azophenyl-2�,4�-disulfonic acid; PPNDS, pyridox-
al-5�-phosphate-6-(2�-naphthylazo-6�-nitro-4�,8�-disulfonate; PSB-1011, di-
sodium 1-amino-4-[3-(4,6-dichloro[1,3,5]triazine-2-ylamino)-4-sulfophenyl-
amino]-9,10-dioxo-9,10-dihydroanthracene-2-sulfonate; PSB-10211,
1-amino-4-[3–4,6-dichloro[1,3,(5]triazine-2-ylamino)phenylamino]-9,10-
dioxo-9,10-dihydroanthracene-2-sulfonate; r, rat; RB-2, reactive blue 2; Ro-
0437626, N-[(1R)-2-[[(1S,2R,3S)-1-(cyclohexylmethyl)-3-cyclopropyl-2,
3-dihydroxypropyl]amino]-2-oxo-1-(4-thiazolylmethyl)ethyl]-1H-benzimid-
azole-2-carboxamide; RO-4, 5-[5-iodo-4-methoxy-2-(1-methylethyl)
phenoxy]-2,4-pyrimidine diamine hydrochloride; RO-5, 5-(5-ethynyl-2-
isopropyl-4-methoxy-phenoxy)-pyrimidine-2,4-diamine; RO-85, 1-methyl-
3-phenyl-1H-thieno[2,3-c]pyrazole-5-carboxylic acid [(R)-2-(4-acetyl-
piperazin-1-yl)-1-methyl-ethyl]-amide; ROS, reactive oxygen species; SB9,
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tides: P2X receptors (P2XRs1) and P2Y receptors
(P2YRs). P2XRs are a family of ligand-gated receptor
channels. Seven mammalian purinergic receptor sub-
units, denoted P2X12 through P2X7, and several spliced
forms of these subunits have been identified (North,
2002). P2YRs are G protein-coupled receptors. Eight
mammalian P2YRs, denoted P2Y1R, P2Y2R, P2Y4R,
P2Y6R, P2Y11R, P2Y12R, P2Y13R, and P2Y14R, have
been cloned (Fischer and Krügel, 2007). There are also
four subtypes of nucleoside-activated G protein-coupled
receptors known as P1 or adenosine receptors (ARs):
A1R, A2AR, A2BR, and A3R (Ralevic and Burnstock,
1998). It has also been shown that nucleotides act not
only as neurotransmitters but also as paracrine factors
delivered by diffusion that requires several seconds,
rather than a few milliseconds, to activate the receptors
(Browne et al., 2010). The duration and distance of their
actions are limited by several enzymes called ectonucle-
otidases (Yegutkin, 2008).

P2XRs are nonselective cation-conducting channels
present in multiple species, from unicellular organisms
to humans, but the phylogeny of these receptors remains
to be established. The simplest organism that encodes a
P2XR is the eukaryote green algae Ostreococcus tauri
(Fountain et al., 2008). Although an ancestral prokary-
otic P2XR has not been identified, these receptors are
present in several invertebrate and vertebrate species
(Fountain and Burnstock, 2009) and some of the prop-
erties of these channels (such as allosteric modulation)
have been maintained evolutionarily (discussed in sec-
tion IV). Some members of these channels provide not
only a narrow conducting pathway for the passage of
small ions but also a pathway for the passage of larger
organic cations by dilation of the endogenous pore and/or
integration of another channel or transporter. The na-
tive agonist for P2XRs is ATP, whereas both ATP and its
metabolite ADP act as agonists for P2YRs in a receptor-
specific manner. Other endogenous nucleotides, such as
UTP, UDP, and UDP-glucose, are potent agonists for
some P2YRs, but they have no activity at P2XRs (Jacob-
son et al., 2006). Diadenosine polyphosphates, known as
dinucleotides, also act as agonists for P2XRs and P2YRs.
These compounds are naturally occurring substances
that are structurally related to ATP. They are composed
of two adenosine moieties linked by their ribose 5� ends
to a variable number of phosphates (ApnA) (Pintor et al.,
2000). Ectonucleotidase-derived AMP does not act as an
agonist, but its degradation product, adenosine, is a
natural agonist for ARs. Inosine, formed by the deami-
nation of adenosine, has also been shown to have agonist
activity at ARs (Guinzberg et al., 2006).

In this article, we review the current knowledge on
orthosteric and allosteric regulation of P2XR function.
Detailed literature on the expression, distribution, and
function of P2XRs can be found elsewhere (see Burn-
stock and Knight, 2004; Burnstock, 2007; Surprenant
and North, 2009). In contrast to G protein-coupled re-
ceptors, the wild-type P2XRs do not show obvious con-
stitutive activity in the absence of agonist (North, 2002).
The receptors probably have three classic agonist bind-
ing sites (Browne et al., 2010). Here we use the term
“orthosteric sites” to describe all ATP binding sites on
P2XRs, because they are the primary binding sites
needed for the conformational changes that allow for the
opening of the channels (gating).

The gating of P2XRs usually consists of three phases:
a rapid rising phase of inward current induced by the
application of agonist (activation phase), a slowly devel-
oping decay phase in the presence of an agonist (desen-
sitization phase), and a relatively rapid decay of current
after ATP is removed (deactivation phase). The main
difference among receptors is in their sensitivity for
agonists and their activation and desensitization rates.
Figure 1A shows the profile of P2XR currents in re-
sponse to supramaximal concentrations of ATP (10 �M
for P2X1R and P2X3R, 100 �M for P2X2R and P2X4R,
and 10 mM for P2X7R). P2X1R and P2X3R rapidly ac-
tivate and desensitize, whereas P2X2R and P2X4R
slowly desensitize. Rat P2X5Rs generate low amplitude
nondesensitizing currents, whereas human and chick
P2X5R respond with larger currents. The P2X6R does
not express well at the plasma membrane (Collo et al.,
1996). On the other hand, the gating of P2X7R is more
complex, as indicated by the secondary current growth
during sustained agonist application (Fig. 1A).

The dependence of activation, desensitization, and de-
activation kinetics on agonist concentration was studied
in detail using P2X4R as a receptor model (Yan et al.,
2006). The activation efficiency increases with elevation
in ATP concentration, and the activation time inversely
correlates with ATP concentration (Fig. 1C). There is
also an inverse relationship between desensitization
time and ATP concentration (Fig. 1, D and E). In con-
trast, deactivation kinetics is independent of agonist
concentration (Fig. 1B). The P2X2R exhibits a similar
dependence of gating properties on agonist concentra-
tions (Zemkova et al., 2004). Experiments with outside-
out patches containing recombinant rP2X2Rs revealed
an 80-�s delay between the time when ATP arrives at
the receptor and the opening of the channels. In addi-
tion, a brief pulse of saturating ATP leaves fully ligan-
ded channels without producing an opening at least 30%
of the time (Moffatt and Hume, 2007). The deactivation
properties of P2X1R and P2X3R are difficult to estimate
because of the rapid receptor desensitization. The gating
of P2X7R differs from that of other members of this
family of channels (Yan et al., 2010). For details on the
gating properties of P2XRs, see North (2002).

6-((4,6,8-trisulfo-1-naphthyl)iminocarbonyl-1, 3-(4-methylphenylene)imi-
nocarbonyl-1,3-phenylene-azo)-pyridoxal-5�-phosphate; SS, disulfide brid-
ges; TM, transmembrane; TNP-ATP, trinitrophenyl-ATP; z, zebrafish.

2 According to the IUPHAR website (http://www.iuphar-db.org),
the P2XR numbers should not be subscript as was commonly used in
the past.
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The behavior of P2XRs can be altered by allosteric
interactions. These interactions occur at additional sites
that are linked conformationally or by other mecha-
nisms to the orthosteric site(s) in such way that binding
to one site can change the nature and extent of binding
or signaling via the other site (Christopoulos et al., 2004;
Gao and Jacobson, 2006). Thus, allosteric ligands bind to
sites that are topographically distinct from the or-
thosteric sites recognized by the receptor’s endogenous
agonist. Allosteric perturbation arises not only from the
binding of small or large molecules extracellularly but

also from changes in temperature, ionic strength, or
concentration and from covalent modification tethering,
glycosylation, phosphorylation, and ubiquitination, which
could take place extracellularly in the transmembrane
(TM) region or intracellularly (Tsai et al., 2009).

Allosteric systems are also much more versatile than
orthosteric systems in that modulator ligands can aug-
ment, block, or potentiate the effects of the orthosteric
agonist, and this effect can change with the nature of
agonist (Kenakin, 2010). The term cooperativity is fre-
quently used to describe the magnitude of an allosteric
effect, which could be either positive or negative, leading
to up- or down-regulation of receptor function. Thus,
receptor allosterism can be defined as the effect on a
receptor produced by simultaneous interactions with
two distinct ligands: orthosteric and allosteric. The al-
losterically modified receptor exhibits different affinities
and efficacies for all interactants. The term affinity is
used to describe the ability of an agonist to bind to a
receptor, whereas potency is a measure of agonist activ-
ity expressed in terms of the concentration required to
generate an effect of a given intensity, usually expressed
as the EC50 value. The term efficacy describes the degree
to which different agonists (full and partial) produce
maximal responses when occupying the same proportion
of receptors, usually expressed as the Emax value.

In this review, we begin by summarizing the work
concerning the pharmacology and structure of the or-
thosteric binding sites. This will be followed by a sum-
mary of the effects of trace metals (zinc, copper, cobalt,
and nickel), heavy metals (mercury and cadmium), and
macro metals (calcium, magnesium, and sodium) on re-
ceptor function and the identification of residues respon-
sible for the binding of these metals. We will also review
the literature pertaining to the effects of protons, iver-
mectin (IVM), neurosteroids, alcohols, and related clin-
ically relevant anesthetic drugs, as well as the signaling
pathways involved in the regulation of these receptor
channels, such as reactive oxygen species, calmodulin
(CaM), kinases, and phosphoinositides. Based on the
crystal structure of the zebrafish P2X4.1R (zP2X4.1R),
solved at a 3.5-Å resolution (Kawate et al., 2009), we
have also generated a homology model of rat P2X4R
(rP2X4R) and reanalyzed data published by our own
group and other groups that have been working on the
structural and functional characterization of this recep-
tor. Throughout the text, we will use the homology
model of rP2X4R to discuss orthosteric and allosteric
binding sites.

II. Molecular and Crystal Structure of
P2X2 Receptors

All members of extracellular ligand-gated ion chan-
nels contain two functional domains: an extracellular
domain that binds a native agonist and a TM domain
that forms an ion channel. Among ligand-gated receptor

FIG. 1. Gating properties of P2XRs. A, profiles of P2XR currents in-
duced by sustained agonist application. Recombinant rat receptors were
expressed in HEK293 cells and stimulated with ATP (10 �M for P2X1R
and P2X3R, 100 �M for P2X2R and P2X4R, and 3 mM for P2X7R). �des
indicates the desensitization time constant derived from monoexponen-
tial fitting (mean � S.E.M.; values from at least five records per channel).
B to E, characterization of P2X4R current. B, Deactivation time values
(10–90%) are independent from the ATP concentration. C, inverse rela-
tionship between activation time and ATP concentration. D and E, in-
verse relationship between the values for 10% (D) and 90% (E) desensi-
tization time and ATP concentrations.
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channels, P2XRs are the simplest. Cloning of P2XRs
revealed that all subunits have a large (�280 amino
acids) extracellular loop (hereafter referred to as the
ectodomain), two TM domains (TM1 and TM2), and in-
tracellularly located N and C termini of variable lengths,
resembling the topology of structurally unrelated epi-
thelial sodium channels and the mechanosensitive de-
generin channels (Stojilkovic, 2008).

The precise biophysical characterization of native and
recombinant P2XRs was instrumental in generating the
hypothesis that these channels are organized as trimeric
homomers or heteromers. The concentration-depen-
dence of P2XR activation measured by whole-cell (Bean
et al., 1990; Jiang et al., 2003) and single-cell (Ding and
Sachs, 1999) recording suggested that three molecules of
ATP were required for channel gating. Biochemical
studies showed that under nondenaturizing conditions,
P2XRs migrated as trimers in polyacrylamide gel elec-
trophoresis, therefore suggesting that this was the con-
formation of native functional channels (Nicke et al.,
1998). The same conclusion has been reached in a study
with heteromeric P2XRs (Nicke et al., 2005). Other
study showed that mutations that affect channel gating
by methanethiosulfonate bromide block were effective only
if they were contained in the three first subunits of concat-
enated P2XRs, further supporting a trimeric conformation
(Stoop et al., 1999). Subsequently, other more sophisti-
cated techniques, such as atomic force microscopy (Barrera
et al., 2005; Nakazawa et al., 2005) and electron micros-
copy (Young et al., 2008), have corroborated the trimeric
nature of P2XRs.

A structure for P2X2R at 15-Å resolution was also
recently reported (Mio et al., 2009). Crystallization of
the zP2X4.1R at 3.5-Å resolution showed that the recep-
tor is indeed a trimer. As described by Kawate et al.
(2009), each subunit rises from the plasma membrane,
like a dolphin from the surface of the ocean, with its tail
submerged within the lipid bilayer. The body regions of
three subunits mutually intertwine, forming a central
vertical cavity. The ectodomain projects 70 Å above the
plasma membrane, and there are three vestibules in the
center of the ectodomain (Kawate et al., 2009). Compar-
ison of the zP2X4R with acid-sensing ion channel struc-
ture revealed similarity in pore architecture and aque-
ous vestibules (Gonzales et al., 2009).

Channels are organized as homotrimers or hetero-
trimers. Initial evidence for the formation of functional
heteromers came from studies coexpressing the slowly
desensitizing and ��-meATP-insensitive P2X2R with
the rapidly desensitizing and ��-meATP-sensitive P2X3R,
resulting in a slow desensitizing and ��-meATP-sensitive
P2X2/3R (Lewis et al., 1995). A series of 11 heteromers was
predicted by immunoprecipitation studies (Torres et al.,
1999a). So far, six functional P2XR heteromeric receptors
have been characterized: P2X1/2R (Brown et al., 2002;
Aschrafi et al., 2004), P2X1/4R (Nicke et al., 2005),
P2X1/5R (Torres et al., 1998; Haines et al., 1999; Lê et al.,

1999), P2X2/3R (Lewis et al., 1995; Liu et al., 2001a; Spelta
et al., 2002; Jiang et al., 2003), P2X2/6R (King et al., 2000;
Barrera et al., 2007), and P2X4/6R (Lê et al., 1998).

Studies using mutagenesis combined with functional
expression have allowed for the initial designation of
certain amino acids in specific receptor functions. The
ecodomain contains 10 conserved cysteine residues that
have been predicted to make bonds in the following
order (P2X4R numbering): 116 to 165 (SS1), 126 to 149
(SS2), 132 to 159 (SS3), 217 to 227 (SS4), and 261 to 270
(SS5) (Clyne et al., 2002b; Ennion and Evans, 2002;
Rokic et al., 2010). In P2X1R, the individual bonds are
not essential for receptor function (Ennion and Evans,
2002). For P2X2R, however, the SS1 and SS4 bonds are
individually required for proper receptor function (Clyne
et al., 2002b). Disruption of the SS1, SS2, and SS4-
P2X4R bonds by substituting both cysteines with thre-
onine generated less sensitive receptors. Of these three
bonds, mutation of the SS4 cysteine residues generated
the most profound changes in receptor function (Rokic et
al., 2010). The ectodomain also contains two to six as-
paragines that may contribute to N-linked glycosylation,
an important process for the proper trafficking of P2XRs
to the plasma membrane and receptor functions (North,
2002). As discussed in the following sections, SS bonds
may participate in the formation of an allosteric regula-
tory domain, and other ectodomain residues may be
important for the formation of ATP binding sites and
several allosteric sites.

The crystal structure of zP2X4.1R provided direct ev-
idence for the existence of these conserved disulfide
bonds. The first three bonds are located in the head and
beak regions of ectodomain, the fourth bond is located
within the dorsal fin, and the fifth bond at the ends of
two �-sheets in the low body region. The mammalian
model of P2X4R, based on the crystal structure of
zP2X4.1R, provides some rationale for the specific roles
of the SS1 to -5 disulfide bonds in P2X4R function. The
model shows that bonds SS1 to -3 are located within the
head domain above the predicted ATP binding pocket,
whereas SS4 is below the ATP binding pocket. The
model also shows that the SS5 bond is located relatively
far from the putative ATP binding site but close to the
extracellular vestibule above the TM domains (Stojilk-
ovic et al., 2010b). The SS4 bond is absent in the simple
eukaryote O. tauri, and SS2, SS3, SS4 and SS5 bonds
are absent in Dictyostelium discoideum (Surprenant and
North, 2009). These receptors are functional, but a high
concentration of agonist is required for their activation,
suggesting that the formation of the SS bonds was an
important step in the evolution of P2XR proteins. To-
gether, these findings indicate that SS bonds provide the
structural basis for the tridimensional organization of
these receptors.

Perturbation of receptor function caused by scanning
mutagenesis of the TM domains was useful in predicting
that these regions adopt �-helical structures in activated
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P2X2Rs (Rassendren et al., 1997a; Egan et al., 1998;
Haines et al., 2001a,b; Jiang et al., 2001; Khakh and
Egan, 2005) and P2X4Rs (Silberberg et al., 2005;
Jelínkova et al., 2008; Jindrichova et al., 2009). These
experiments also helped identify the key regions in-
volved in ion permeation. The helices of different sub-
units seem to move relative to each other during channel
opening and closing (Egan et al., 1998), and TM2 seems
to play a dominant role in receptor functions (Torres et
al., 1999b; Duckwitz et al., 2006), channel assembly,
gating, ion selectivity, and the permeability of divalent
ions (Egan et al., 1998; Li et al., 2004; Khakh and Egan,
2005; Samways and Egan, 2007; Li et al., 2008). TM2
residues Thr336, Thr339, and Ser340 were suggested to
contribute to the formation of the pore, gate, and selec-
tivity filter of P2X2Rs (Migita et al., 2001; Egan and
Khakh, 2004; Samways and Egan, 2007). It has been
proposed that the external gate region Ile332 to Ile341

expands, and the pore-forming helices straighten, re-
sulting in the opening of the channel pore (Li et al.,
2010). None of the residues that seem to contribute to
the formation of the P2X2R pore gate are conserved,
clearly indicating that further structural information is
required to understand the orientation of the TM2 res-
idues in closed and open states.

Alanine and cysteine scanning of the P2X4R-TM1 do-
main indicated that Gly29, Met31, Tyr42, Gly45, and Val49

residues are mutation-sensitive (Jelínkova et al., 2008;
Jindrichova et al., 2009). Among these residues, the
conserved Tyr42 residue seemed to play the most impor-
tant role in receptor function. At first, it was suggested
that this residue affected the cation permeability of
P2X2R only indirectly (Samways et al., 2008). The
P2X4R-Y42 mutant showed an increased sensitivity to
ATP and a decreased Emax (Silberberg et al., 2005; Jin-
drichova et al., 2009). In P2X1R, replacement of this
residue with alanine resulted in nonfunctional channels,
further supporting the importance of this residue in
receptor function. The sensitivity of the P2X3R-Y37A
mutant to ATP was also increased. In addition, ��-
MeATP was changed from a partial to full agonist for
P2X2R and P2X4R with increased sensitivity. In con-
trast, mutation of the conserved TM1 tyrosine of P2X7R
did not result in an increased sensitivity to ATP (Jin-
drichova et al., 2009).

Crystallization of zP2X4.1R (Kawate et al., 2009) con-
firmed the hypothesis that the TMs adopt �-helical
structures. Consistent with the prediction that the TM2
region plays a dominant role in receptor function, chan-
nel assembly, gating, ion selectivity, and the permeabil-
ity of divalent ions, the homology model of rat P2X4R
shows that the TM2 domains form a triangle, which is
the pore of the channel in a closed state, whereas the
three TM1 domains are located more peripherally. The
homology P2X4R model suggests that Tyr42 is located at
the level of the membrane where the TM2 helices cross
each other and the TM pore is the narrowest (Stojilkovic

et al., 2010b). The model shows the position of Trp50 and
Trp46 residues, which have been shown to influence the
function of the Tyr42 residue. Furthermore, the model
suggests that Met336 of the second subunit may interact
with Tyr42 in the closed state, a possibility that should
be tested experimentally. The zebrafish structure also
provided important information about residues that
could account for the cation selectivity of P2XRs. These
include acidic residues in the central vestibule that
could concentrate cations in the extracellular part of the
channel (Asp59 and Asp61) and a residue that could
directly interact with cations in the channel pore
(Asn341). It also gave some clues about which residues
are important for the channel gate: Leu340 and Asn341 in
the extracellular part of the gate and Ala344, Leu346, and
Ala347 as the hydrophobic residues that form the intra-
cellular gate.

At present, we do not know the organization of the N
and C termini in three dimensions. The N termini of all
P2XRs is relatively short (around 25 amino acids),
whereas the lengths of the C termini range from approx-
imately 30 amino acids (P2X6R) to approximately 215
residues (P2X7R). Both the N and C termini serve as
molecular targets for a series of post-transcriptional and
post-translational modifications, including RNA splic-
ing, phosphorylation, and protein-protein interactions
(North, 2002). The physiological relevance of spliced
channels has been well documented for P2X2R (Fig. 2).
Two functional splice forms of these receptors, P2X2bR
and P2X2eR, desensitize more rapidly than the full-
sized receptor, P2X2aR (Brändle et al., 1997; Simon et
al., 1997; Koshimizu et al., 1998b, 2006). In contrast, the
C-terminal of P2X7R contains a unique Tyr358 to Glu375

sequence that contributes to the transition from the
open to dilated state (Jiang et al., 2005a; Yan et al.,
2008). The N and C termini also contain conserved phos-

FIG. 2. Dependence of the mP2X2R current on the C-terminal struc-
ture. Top, schematic representation of the P2X2R splice forms. Bottom,
typical patterns of ATP-induced current profiles for P2X2Rs expressed in
GT1–7 (left) and HEK293 cells (right). Blue traces, P2X2aR; red traces,
P2X2bR; green traces, P2X2eR.
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phorylation sites for protein kinases A and C and other
important regions responsible for the regulation of
P2XRs, which is discussed in detail in the following
sections.

III. Orthosteric Binding Sites and
Receptor Function

A. P2X Receptor Agonism and Antagonism

All homomeric and heteromeric receptors are acti-
vated by ATP but in a receptor-specific manner, the
EC50 values ranging from nanomolar to submillimolar
concentrations. As stated under Introduction, P2XRs are
more structurally restrictive than P2YRs with regard to
agonist selectivity. P2XRs are also activated by natu-
rally occurring diadenosine polyphosphates (ApnAs, n �
3–7) and closely related dinucleotides (ApnGs, n � 3–6),
but with a lower potency and efficacy than ATP. Alone,
these agonists cannot be used to distinguish P2XRs.
Other nucleoside triphosphates, such as CTP and GTP,
can also activate some P2XRs. In contrast, ADP, AMP,
adenosine, UTP, UDP, and UMP activate these recep-
tors either weakly or not at all. The chemical structure
of most common P2X agonists and antagonists can be
found elsewhere (Ralevic and Burnstock, 1998; Kim et
al., 2001; Lambrecht et al., 2002).

It has been difficult to develop subunit-specific ago-
nists for P2XRs. The agonists that currently exist are
analogs of ATP and act at several P2XRs with different
potencies and efficacies. Triphosphate modification re-
sulted in the generation of several potent P2XR agonist
analogs. �,�-Methylene-ATP (��-meATP) and �,�-meth-
ylene-ATP (��-meATP) are phosphonic acid analogs of
ATP in which the bridging oxygen atom between corre-
sponding phosphates is replaced with the methylene
group. These analogs are metabolically more stable than
ATP, do not activate P2YRs, exhibit higher potencies at
P2X1R and P2X3R homomeric and heteromeric recep-
tors, and serve as radioligands for these receptors. The
thio substitution at the terminal phosphates resulted in
several analogs, including adenosine-5�-O-(3-thiotriphos-
phate) (ATP�S), which are relatively resistant to break-
down by ectonucleotidases. ATP�S activates all P2XRs
except P2X7R, as well as several P2YRs. Substitution of
the adenine ring resulted in the formation of 2-methylthio-
ATP (2-meSATP), the most potent agonist for P2XRs and
P2YRs, and several other analogs. Because it does not
activate adenosine receptors, 2-meSATP was an important
compound in establishing the existence of two P2 receptor
families. 2�(3�)-O-4-benzoylbenzoyl)-ATP (BzATP), a modified
ribose derivative, is a common agonist for P2XRs that, with
the exception of P2Y11R and P2Y13R, does not activate
P2YRs (Jacobson et al., 2002; Carrasquero et al., 2009; Jarvis
and Khakh, 2009).

Several nucleotide derivatives also act as P2XR an-
tagonists. Trinitrophenyl-ATP (TNP-ATP) and the cor-
responding di- and monophosphate derivatives inhibit

P2X1R, P2X3R, and P2X2/3R at nanomolar concentra-
tions (Virginio et al., 1998b). The oxidized form of ATP
has been suggested to act as an mP2X7R-specific blocker
(Jacobson et al., 2002). Ip5I, a diinosine polyphosphate,
inhibits P2X1R currents at nanomolar concentrations,
and Ip4I and Ip5I block P2X3R at micromolar concentra-
tions (King et al., 1999).

Suramin is a large, complex, polysulfonated molecule
and is one of the most widely used competitive P2R
antagonists (Jacobson et al., 2002; Lambrecht et al.,
2002). However, suramin is not specific for P2Rs and
also antagonizes G proteins (Freissmuth et al., 1996;
Hui and Nayak, 2002); inhibits several proteases, in-
cluding HIV reverse transcriptase (Jentsch et al., 1987)
and tyrosine phosphatase (Zhang et al., 1998); and stim-
ulates ryanodine receptors (Hohenegger et al., 1996).
Suramin inhibits ATP-induced currents in a receptor-
specific manner (North, 2002). The replacement of Gln78

residue with Lys at rP2X4R was sufficient to increase
the sensitivity of this receptor for suramin (Garcia-Guz-
man et al., 1997a) but not to the extent observed in cells
expressing human receptor (hP2X1R) (Roberts and Ev-
ans, 2004), indicating that other receptor regions are
important for the recognition of this drug. Human and
mouse P2X1R also exhibit marked differences in sensi-
tivity to suramin, and the nonconserved Lys138 residue
may contribute to the antagonistic action of this drug
and its derivatives (Braun et al., 2001; Sim et al., 2008).

A number of truncated forms of suramin, including 8,8�-
[carbonylbis(imino-3,1-phenylenecarbonylimino)]bis-1,3,5-
naphthalene-trisulfonic acid (NF023), 8,8�-[carbonylbis
(imino-4,1-phenylenecarbonylimino-4,1-phenylenecarbon-
ylimino)]bis-1,3,5-naphthalenetrisulfonic acid (NF279),
4,4�,4�,4�-[carbonylbis(imino-5,1,3-benzenetriyl-bis(car-
bonylimino))]tetrakis-1,3-benzenedisulfonic acid (NF449),
and 8,8�,8�,8�-(carbonylbis(imino-5,1,3-benzenetriyl-
bis(carbonylimino)))tetrakis-naphthalene-1,3,5-trisulfonic
acid-dodecasodium salt (NF864) exhibit P2R antagonist
activity. NF023 inhibits several homomeric and hetero-
meric P2XRs expressed in Xenopus laevis oocytes and is
most potent at P2X1R (Soto et al., 1999). NF279 does not
affect the activation of adenosine receptors, exhibits low
inhibitory potency on P2YRs and ectonucleotidases, and
antagonizes P2XRs (Damer et al., 1998), showing the
greatest potency at P2X1R and P2X7R (Klapperstück et
al., 2000; Rettinger et al., 2000; Donnelly-Roberts et al.,
2009a). NF449 inhibits rP2X1R with subnanomolar po-
tency (Braun et al., 2001; Kassack et al., 2004; Rettinger et
al., 2005) but also inhibits Gs proteins (Hohenegger et al.,
1998) and fibroblast growth factor receptor 3 signaling
(Krejci et al., 2010). Three isomeric suramin analogs,
4,4�,4�,4�-[carbonylbis[imino-5,1,3-benzenetriylbis(carbon-
ylimino)]]tetrakisbenzenesulfonic acid tetrasodium salt
(NF110) and ortho-(2,2�,2�,2�-(carbonylbis(imino-5,1,3-
benzenetriylbis (carbonylimino)))tetrakis-benzenesulfonic
acid (MK3), are �200-fold less potent than NF449 in block-
ing P2X1R (Hausmann et al., 2006). NF864 selectively
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blocks hP2X1R with low nanomolar potency (Horner et al.,
2005).

Pyridoxal 5-phosphate 6-azophenyl-2�,4�-disulfonic acid
(PPADS) is another compound that is commonly used as a
P2XR inhibitor. In contrast to suramin, the P2R specificity
of PPADS is very high. It acts noncompetitively and re-
duces the Emax value of ATP at high concentrations.
PPADS blocks homomeric P2X1Rs, P2X2Rs, P2X3Rs, and
P2X5Rs as well as heteromeric P2X2/3Rs, P2X1/5Rs, and
P2Y1Rs, whereas it is weak or ineffective as an antagonist
at rat P2X4Rs, P2X6Rs, P2X7Rs, and several P2YRs. Sev-
eral attempts have been made to identify the ectodomain
residues responsible for this receptor specificity. The sen-
sitivity of P2X4R to PPADS was restored by replacing
Glu249 with the lysine that occurs at the equivalent posi-
tion in PPADS-sensitive P2X1R and P2X2R (Buell et al.,
1996). However, the reverse mutation in the P2X2R did
not remove inhibition, and this lysine is not present in
PPADS-sensitive hP2X3Rs and hP2X7Rs. The human and
mouse P2X4Rs have almost identical amino acid se-
quences around Glu294 but are sensitive to PPADS, indi-
cating that other regions determine PPADS sensitivity
(Garcia-Guzman et al., 1997a; Jones et al., 2000). Subse-
quent studies reveled that the 81-to-183 region of rP2X4R
(Garcia-Guzman et al., 1997a), specifically Arg126 (Michel
et al., 2008b), contributes to PPADS insensitivity.

A chemical cousin to PPADS, pyridoxalphosphate-6-
azophenyl-2�,5�-disulfonic acid, has somewhat distinct
pharmacological properties (Jacobson et al., 2002; Lam-
brecht et al., 2002). Pyridoxal-5�-phosphate-6-(2�-naphthy-
lazo-6�-nitro-4�,8�-disulfonate (PPNDS) potently antago-
nized rP2XR-mediated responses in the vas deferens of
rats and at recombinant rP2X1Rs expressed in X. laevis
oocytes. PPNDS is approximately 50-fold less selective for
P2Y1R and does not interact with �1A-adrenergic, adeno-
sine A1 and A2B, histamine H1, or muscarinic M3 receptors
(Lambrecht et al., 2000b). 1,5-dihydro-3-hydroxy-8-
methyl[1,3,2]dioxaphosphepino[5,6-c]pyridin-9-ol-3-oxide
(MRS2219) is a selective potentiator of ATP-evoked re-
sponses at rP2X1R, whereas the corresponding 6-azophe-
nyl-2�,5�-disulfonate derivative, know as MRS2220, is a
selective antagonist of this receptor (Jacobson et al.,
1998). 4-[(4-formyl-5-hydroxy-6-methyl-3-[(phosphonooxy)
methyl}-2-pyridinyl)azo]-benzoic acid (MRS2159) is a po-
tent inhibitor of rP2X1R (Brown et al., 2001; Kim et al.,
2001) and mouse, rat, and human P2X7R (Donnelly-
Roberts et al., 2009a). Pyridoxal-5�-phosphate-6-azophe-
nyl-3�,5�-bimethylenphosphonate (MRS2257) inhibits both
P2X1R and P2X3R but with higher potency than PPADS
(Brown et al., 2001). 6-((4,6,8-Trisulfo-1-naphthyl)imino-
carbonyl-1, 3-(4-methylphenylene)iminocarbonyl-1,3-
phenylene-azo)-pyridoxal-5�-phosphate (SB9) is a high-
affinity P2Y1R antagonist with a 10-fold lower potency at
P2X1R (Lambrecht et al., 2000a).

The anthraquinone class of compounds is also used to
inhibit P2R. There has been some confusion concerning
the identity and purity of commercially available reac-

tive blue 2 (RB-2) and the corresponding pure isomer,
Cibacron blue 3GA. Here we use term RB-2 to describe
the antagonistic actions of the mixture of terminal ring
meta- and para-sulfonate, and we discuss separately the
allosteric actions of Cibacron blue 3GA, the purified
ortho isomer, at recombinant P2XRs. The antagonistic
actions of RB-2 were observed in several diverse ATP-
mediated physiological responses, such as rat urinary
bladder smooth muscle contraction (Hashimoto and
Kokubun, 1995), rat cecum inhibitory junction poten-
tials (Manzini et al., 1986), and calcium influx in rat
parotid acinar cells (Soltoff et al., 1989). It has also been
suggested that RB-2 inhibits ectonucleotidase activity in
X. laevis oocytes (Ziganshin et al., 1996) and ATP-in-
duced inflammation of the mouse hind paw (Ziganshina
et al., 1996). The inhibitory effects of RB-2 were also
observed in currents and calcium measurements in sin-
gle PC12 cells (Nakazawa et al., 1991; Michel et al.,
1996) as well as in experiments with cells expressing
recombinant rP2X1R and P2X2R (Surprenant, 1996).
For a more detailed description of the antagonistic ac-
tions of RB-2, see Ralevic and Burnstock (1998).

Several other related compounds, such as RB-4, RB-5,
1519, and acid blue-25, -41, -80, and -129, have also been
tested for their antagonistic actions at P2Rs (Tuluc et al.,
1998). A series of RB-2 type anthraquinone derivatives
were also synthesized, re-evaluated, and tested for their
potency at P2Rs. Among them, 1-amino-4-(4-(4-chloro-6-(2-
sulfonatophenylamino)-(1,3,5)triazine-2-ylamino]-2-sul-
fonatophenylamino)-9,10-dioxo-9,10-dihydroanthracene-2-
sulfonic acid trisodium salt (MG50-3-1) is the most potent
antagonist for P2Y1R, and none of the compounds tested
exhibited specificity for P2XRs (Glänzel et al., 2003, 2005).

1. Homomeric P2X1 Receptor. One of the first pieces
of evidence for the expression of P2X1R came from ex-
periments indicating a role for ATP as a neurotransmit-
ter involved in contractions of the guinea pig detrusor
smooth muscle (Burnstock, 1972). Further studies found
that ��-meATP could be substituted for ATP in these
neurogenic contractions (Burnstock et al., 1978; Kasa-
kov and Burnstock, 1982). Electrophysiological studies
showed transient concentration-dependent effects of
ATP and ��-meATP on inward currents causing mem-
brane depolarization in isolated detrusor smooth muscle
cells (Fujii, 1988; Inoue and Brading, 1990, 1991). Later,
this receptor was cloned from the vas deferens of rats
(Valera et al., 1994) and the human urinary bladder
(Valera et al., 1995) and termed P2X1R.

In general, this receptor is densely localized in smooth
muscle cells, including the urinary bladder, intestines,
vas deferens, and arteries (Mulryan et al., 2000; Burn-
stock and Knight, 2004). Other tissues that express the
P2X1R include the smooth muscle of small arteries,
dorsal root, lung, central and peripheral nervous sys-
tem, platelets, and megakaryocytes (Valera et al., 1994,
1995; Longhurst et al., 1996). In accordance with this,
mice lacking the gene encoding P2X1R do not show
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rapidly desensitizing inward currents in the detrusor
smooth muscle, vas deferens, and mesenteric arteries
(Mulryan et al., 2000). Furthermore, platelets from
P2X1R-deficient mice do not show normal aggregation,
secretion, adhesion, and thrombus growth, and they
have reduced mortality (Vial and Evans, 2000, 2002;
Hechler et al., 2006). On the other hand, transgenic mice
overexpressing human P2X1R exhibit hypersensitive
platelet responses in vitro and increased mortality
(Oury et al., 2003).

Recombinant receptors respond to agonist application
with a rapid rise in current, followed by a decline in the
current amplitude during the sustained agonist applica-
tion (Fig. 1A). The rates of receptor desensitization are
augmented by increases in the agonist concentration.
Repeated agonist applications lead to progressively
smaller currents when applied less than 10 min apart
(Valera et al., 1994). A similar response pattern is also
observed in cells expressing recombinant P2X3R (Fig. 1)
and P2X2eR, the splice form of mP2X2R (Fig. 2). Run-
down of current measured by the whole-cell recording
was unaffected by changes in cytosolic calcium and was
abolished when the amphotericin-perforated patch clamp
was used for current recording (Lewis and Evans, 2000).
Experiments using green fluorescent protein-attached
P2X1Rs (Dutton et al., 2000) or the biotinylation of surface
P2X1Rs (Ennion and Evans, 2001) suggest that P2X1R is
internalized after agonist activation. This behavior could
contribute to both long-term desensitization and the recov-

ery from desensitization, although intrinsic channel prop-
erties could explain the fast desensitization. P2X1R has
been shown to exhibit both constitutive and agonist-in-
duced recycling after photo-bleaching, suggesting that this
could be important in the recovery from desensitization
(Lalo et al., 2010).

The pharmacological profile of P2X1R is shown in
Table 1. Among P2XRs, this receptor has the highest
affinity for ATP, with an EC50 in the submicromolar
concentration range (Valera et al., 1994; Wildman et al.,
2002; Rettinger and Schmalzing, 2003). The real EC50
value for ATP is probably lower, but it is masked by
rapid receptor desensitization (Rettinger and Schmalz-
ing, 2003). Other ATP analogs, including 2-meSATP,
2-chloro-ATP, ATP�S and BzATP, also activate these
receptors (Evans et al., 1995). hP2X1R is activated by
nanomolar concentrations of ATP, 2-meSATP, ��-
meATP, and BzATP, as estimated by using calcium mea-
surements (Bianchi et al., 1999). Electrophysiological
measurements found EC50 values for hP2X1R to be com-
parable with those observed in rP2X1R. In these exper-
iments, ATP and 2-meSATP were full agonists at
rP2X1R, whereas other ATP analogs were partial ago-
nists (Evans et al., 1995). Ap6A is also a full agonist for
rP2X1R but is less potent than ATP, whereas Ap5A,
AP4A, Ap6G, and Ap5G act as partial agonists (Wildman
et al., 1999a; Cinkilic et al., 2001). These diadenosine
polyphosphates also activate hP2X1R at submicromolar
concentrations (Bianchi et al., 1999). At first, it was

TABLE 1
Pharmacological profile of P2X1R

EC50/IC50 values are micromolar unless otherwise specified.

Compound Method EC50/IC50 References

Full agonists
ATP Current 0.1–0.7 Evans et al., 1995; Wildman et al., 1999a, 2002
��-meATP Current 0.1–1 Evans et al., 1995; Wildman et al., 2002
2-meSATP Current 0.1–1 Evans et al., 1995; Wildman et al., 2002
Ap6A Current 1 Wildman et al., 1999

Partial agonists
��-meATP Current 2 Evans et al., 1995
ATP�S Current 1 Evans et al., 1995
BzATP Current 0.7–24 Evans et al., 1995; Wildman et al., 2002
Ap5A Current 1–3 Evans et al., 1995; Wildman et al., 1999a, 2002
Ap4A Current 40 nM Wildman et al., 1999a, 2002

Antagonists
Suramin Current 1–2 North and Surprenant, 2000; Wildman et al., 2002
PPADS Current 1 North and Surprenant, 2000
PPNDS Current 15 nM Lambrecht et al., 2000
TNP-ATP Current 6 nM Virginio et al., 1998
MRS2220 Current 10 Jacobson et al., 1998
MRS2159 Current 9 nM Kim et al., 2001
NF449 Current 0.5 nM Kassack et al., 2004
NF279 Current 20 nM Rettinger et al., 2000; Klapperstück et al., 2000
NF023 Current 200 nM Soto et al., 1999
Ro-0437626 Calcium 3 Jaime-Figueroa et al., 2005
IP5I Current 3 nM King et al., 1999

Modulators
MRS2219 (�) Current 6 Jacobson et al., 1998
Protons (	) Current pKa 6.3 Wildman et al., 1999b; Stoop et al., 1997
Zinc (	) Current 1 Wildman et al., 1999
Cadmium (	) Current N.D. Nakazawa and Ohno, 1997
Gadolinium (	) Current 10 Nakazawa et al., 1997
PIPs (�) Current N.D. Bernier et al., 2008

(�), positive modulator; (	), negative modulator; PIPs, phosphoinositides; N.D. not determined.
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believed that ADP also activates this channel at high
concentrations, but subsequent studies have shown that
purified ADP is unable to activate hP2X1R (Mahaut-
Smith et al., 2000).

P2X1R and P2X3R are distinct with regard to their
activation by ��-meATP at relatively low concentrations
(Valera et al., 1994). This agonist can activate other
P2XRs as well, but only at high concentrations (He et al.,
2003c). In cells expressing recombinant human P2X1R,
��-meATP is generally less potent than 2-meSATP and
ATP (Valera et al., 1994; Evans et al., 1995; Torres et al.,
1998; Bianchi et al., 1999). The defining pharmacologi-
cal characteristic of P2X1R is the activation by ��-
meATP with a potency comparable with ��-meATP. In
contrast, ��-meATP is approximately 30- to 50-fold less
potent at P2X3R (Evans et al., 1995; Garcia-Guzman et
al., 1997b).

TNP-ATP is a potent (IC50, 6 nM), but not selective,
antagonist of hP2X1R. This compound also inhibits
P2X3R (IC50,1 nM), as well as P2X2R, P2X4R, and
P2X7R at micromolar concentrations (Virginio et al.,
1998b). Native P2X1Rs expressed in rat mesenteric
smooth muscle cells are also inhibited by TNP-ATP with
an IC50 of 2 nM (Lewis et al., 1998). Ip5I is also a highly
potent antagonist at recombinant rP2X1Rs (IC50 � 3
nM) (King et al., 1999). Both antagonists are subject to
degradation by ectonucleotidases, which limits their in
vivo use. This is not the case with PPADS, which inhib-
its rat and human P2X1Rs (Valera et al., 1994; Evans et
al., 1995; Bianchi et al., 1999). The naphthylazo deriva-
tive of the PPADS family, PPNDS, inhibits rP2X1R at
nanomolar concentrations, with an IC50 of 15 nM (Lam-
brecht et al., 2000b) but behaves as an agonist for the
ATP receptor in Paramecium spp. (Wood and Hen-
nessey, 2003). Two other PPADS derivatives, MRS2159
and MRS2220, are highly selective for ATP-induced re-
sponses in rP2X1R, and are ectonucleotidase resistant
(Jacobson et al., 1998; Kim et al., 2001).

Suramin inhibits P2X1R (Valera et al., 1994; Evans et
al., 1995), and suramin derivatives show great promise as
selective antagonists of P2X1R. NF023 inhibits human
and rat P2X1R with an IC50 value of �0.2 �M (Soto et al.,
1999). NF279 is a highly potent rat and human P2X1R
antagonist with IC50 values of 20 to 50 nM with preincu-
bation before ATP application and 2 �M without preincu-
bation. It also inhibits rP2X2R, hP2X7R, and rP2X3R, but
with 40-, 60-, and 80-fold rightward shifts in the potency,
respectively (Klapperstück et al., 2000; Rettinger et al.,
2000). The more potent NF449 inhibits rP2X1R and
hP2X1R with IC50 values of 0.03 and 0.5 nM (Braun et al.,
2001; Hülsmann et al., 2003; Kassack et al., 2004). Both
compounds have also been used to characterize the role of
P2X1R in platelet activation (for review, see Hu and Hoy-
laerts, 2010). NF864 potently inhibits P2X1Rs expressed
in platelets, as documented in a concentration-dependent
study using calcium measurements (Horner et al., 2005).
N-[(1R)-2-[[(1S,2R,3S)-1-(cyclohexylmethyl)-3-cyclopropyl-

2,3-dihydroxypropyl]amino]-2-oxo-1-(4-thiazolylmethyl)
ethyl]-1H-benzimidazole-2-carboxamide (Ro-0437626) is
approximately 30-fold more selective for P2X1R over other
purinergic receptor subtypes (Jaime-Figueroa et al., 2005).

2. Homomeric P2X2 Receptor and Heteromeric P2X1/2
Receptor. The P2X2R was first cloned from rat pheochro-
mocytoma PC12 cells (Brake et al., 1994). Subsequent lo-
calization studies showed broad tissue distribution of this
receptor subtype. It is present in different central nervous
system regions, including cortex, cerebellum, striatum,
hippocampus, nucleus of the solitary tract, and the dorsal
horn of the spinal cord (Kidd et al., 1995; Kanjhan et al.,
1996; Vulchanova et al., 1996; Simon et al., 1997; Vulcha-
nova et al., 1997; Pankratov et al., 1998; Kanjhan et al.,
1999; Scheibler et al., 2004). It is also present in the hypo-
thalamus (Xiang et al., 1998; Stojilkovic, 2009) and retina
(Greenwood et al., 1997) as well as in the peripheral ner-
vous system (Collo et al., 1996; Robertson et al., 1996;
Simon et al., 1997; Vulchanova et al., 1997; Xiang et al.,
1998; Zhong et al., 1998; Zhong et al., 2000, 2001; Calvert
and Evans, 2004; Ma et al., 2004; Cockayne et al., 2005; Ma
et al., 2005). These receptors are also expressed in non-
neuronal cells, including pituitary cells (Stojilkovic and
Koshimizu, 2001; Zemkova et al., 2006; Stojilkovic et al.,
2010a), the adrenal medulla (Vulchanova et al., 1996),
skeletal cells (Ryten et al., 2001; Jiang et al., 2005b), car-
diac cells (Hansen et al., 1999a), smooth muscle cells (Lee
et al., 2000), endothelial and epithelial cells (King et al.,
1998; Hansen et al., 1999b; Birder et al., 2004), and lym-
phocytes (Di Virgilio et al., 2001).

P2X2R is unique among P2XRs, because multiple
splice variants exist in humans, rats, mice, and guinea
pigs and are able to generate homomeric and hetero-
meric channels with different functional properties. In
the anterior pituitary, inner ear, and other brain re-
gions, the primary P2X2 gene transcript undergoes ex-
tensive alternative splicing, resulting in modified mRNA
sequences (Stojilkovic et al., 2000). The spliced subunit,
P2X2b, lacks a series of 69 C-terminal amino acids and
creates a functional homomeric channel that desensi-
tizes more rapidly than the full-sized receptor, P2X2a
(Brändle et al., 1997; Simon et al., 1997; Koshimizu et
al., 1998b; Parker et al., 1998; Housley et al., 1999;
Lynch et al., 1999). The electrostatic charges of six
amino-acid side chains located near the proximal splic-
ing site play a critical role in controlling the rate of
receptor desensitization (Koshimizu et al., 1998a, 1999).
In mouse pituitary cells, an additional functional splice
form has been identified that lacks 90 amino acids in the
C-terminal and is termed P2X2e (Koshimizu et al.,
2006). This receptor has desensitization rates compara-
ble with the rapidly desensitizing P2X1R and P2X3R
(Fig. 2).

The pharmacology of P2X2R is listed in Table 2. ATP
is a full agonist at this receptor, although the estimated
EC50 value for this agonist at rP2X2Rs varies from lab to
lab: 2 �M (Eickhorst et al., 2002), 3 �M (Zemkova et al.,
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2004), 5 �M (Li et al., 2004), 8 �M (Evans et al., 1995),
7 to 37 �M (Clyne et al., 2003), and 60 �M (Brake et al.,
1994). Shorter forms of this receptor exhibit ATP sensi-
tivities comparable with that of the full-sized receptor
(Koshimizu et al., 1998b, 2006). Under the same exper-
imental conditions, mP2X2R is less sensitive to ATP
than rP2X2R (Eickhorst et al., 2002). hP2X2R seems to
be the most sensitive to ATP, with comparable (�1 �M)
EC50 values for ATP, 2-meSATP, ATP�S, and BzATP
(Lynch et al., 1999). The higher sensitivity of hP2X2R
was also shown in current measurements performed
under comparable experimental conditions (Tittle and
Hume, 2008). ATP, 2-meSATP, ATP�S, and BzATP are
roughly equipotent as agonists at the rP2X2R (Brake et
al., 1994). A more detailed analysis revealed a somewhat
lower potency of ATP�S and BzATP and smaller Emax
values, suggesting that these compounds act as partial
agonists (Evans et al., 1995). In all studies, ADP, ��-
meATP, and ��-meATP had very weak effects on P2X2R

activity. Ap4A is a full agonist for rP2X2R, and other
members of this family of agonists are inactive (Wild-
man et al., 1999a). The splice forms of human, rat and
mouse P2X2R show similar agonist sensitivities to the
full-sized receptors (Koshimizu et al., 1998b, 2006;
Lynch et al., 1999). Thus, none of the agonists is selec-
tive for this receptor subtype.

For a long time, no P2X2R-specific antagonists were
available. This has recently changed with the introduction
of the anthraquinone derivatives sodium 1-amino-4-[3-
(4,6-dichloro[1,3,5]triazine-2-ylamino)phenylamino]-9,10-
dioxo-9,10-dihydroanthracene-2-sulfonate (PSB-10211)
and disodium 1-amino-4-[3-(4,6-dichloro[1,3,5]triazine-2-
ylamino)-4-sulfophenylamino]-9,10-dioxo-9,10-dihydroan-
thracene-2-sulfonate (PSB-1011), which acts as P2X2R-
selective antagonists in a nanomolar concentration range
(Baqi et al., 2011). The P2X2R is also inhibited by suramin
and PPADS at concentrations in the low micromolar
range, showing less potency for these compounds than the

TABLE 2
Pharmacological profile of P2X2R

EC50/IC50 values are micromolar unless otherwise specified.

Compound Method EC50/IC50 References

Full agonists
ATP Current 2–8 Evans et al., 1995; Eickhorst et al., 2002, Zemkova et al., 2004
2-meSATP Current/Ca2� 1 Evans et al., 1995; Lynch et al., 1999
Ap4A Current 15 Wildman et al., 1999a

Partial agonists
��-meATP Current �100 Brake et al., 1994; Evans et al., 1995
��-meATP Current �300 Evans et al., 1995
ATP�S Current 10 Evans et al., 1995; Liu et al., 2001
BzATP Current 6–30 Evans et al., 1995; Lynch et al., 1999

Antagonists
Suramin Current 10 Brake et al., 1994; Evans et al., 1995
PPADS Current 1–3 Evans et al., 1995; Lynch et al., 1999
TNP-ATP Current 2 Virginio et al., 1998b
RB-2 Current 0.5 Liu et al., 2001a
NF279 Current 1 Rettinger et al., 2000
NF770 Current 19 nM Wolf et al., 2011
NF776 Current 97 nM Wolf et al., 2011
NF778 Current 140 nM Wolf et al., 2011
PSB-1011 Current 79 nM Baqi et al., 2011
PSB-10211 Current 86 nM Baqi et al., 2011

Modulators
Protons (�) Current pKa 7.3 Stoop et al., 1997; Clyne et al., 2002a
Calcium (	)a Current 5 mM Evans et al., 1996; Ding and Sachs, 2000
Zinc (�)b,c Current 30 Brake et al., 1994; Clyne et al., 2002a; Lorca et al., 2005
Cooper (�)c Current 3 Xiong et al., 1999; Lorca et al., 2005
Cadmium (�) Current �100 Lorca et al., 2005
Lanthanum (	) Current 10 Nakazawa et al., 1997
Gadolinium (	) Current 1 Nakazawa et al., 1997
Mercury (�)d Current 10 Lorca et al., 2005; Coddou et al., 2009
H2O2 (�)d Current 300 Coddou et al., 2009
Myxothiazol (�)d Current 100 nM Coddou et al., 2009
Rotenone (�)d Current 600 nM Coddou et al., 2009
CO (�) Current 3 Wilkinson et al., 2009
Progesterone (�) Current 10 De Roo et al., 2010
DHEA (�) Current 10 De Roo et al., 2003
PIPse Current N.D. Fujiwara and Kubo, 2006
Ethanol (	) Current 100 mM Davies et al., 2002; Popova et al., 2010
Toluene (�) Current 3 mM Woodward et al., 2004
PKA (	) Current Chow and Wang, 1998
VILIP1 (	) Current Chaumont et al., 2008

(�), positive modulator; (	), negative modulator; DHEA, dehydroepiandrosterone; PIPs, phosphoinositides; N.D., not determined; VILIP1, visinin-like protein 1.
a In addition, induces an increase in receptor desensitization/inactivation, also observed with Ba2�, Mn2�, and Mg2�.
b Inhibition at human P2X2R (Tittle and Hume, 2008).
c Biphasic effects, suggesting the existence of more than one allosteric site.
d Through the oxidation of the intracellular Cys430.
e Regulation of receptor desensitization by phosphatidylinositol 3-phosphate and phosphatidylinositol 3,5-bisphosphate.
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homomeric P2X1R and P2X3R (Brake et al., 1994; Evans
et al., 1995). Other compounds, such as TNP-ATP, NF279,
and RB-2, are potent but nonspecific antagonists for this
channel. TNT-ATP inhibits this receptor with an EC50
value of 2 �M, approximately 100-fold less potently than
P2X1R and P2X3R (Virginio et al., 1998b). NF279 acts as
a competitive antagonist at rP2X2R with an IC50 value of
0.76 �M (Rettinger et al., 2000), whereas NF023 shows low
sensitivity at this receptor (IC50 � 50 �M) (Soto et al.,
1999). The suramin derivates 7,7�-(carbonylbis(imino-3,1-
phenylenecarbonylimino-3,1-(4-methyl-phenylene)carbon-
ylimino))bis(1-methoxy-naphthalene-3,6-disulfonic acid)
tetrasodium salt (NF770), 6,6�-(carbonylbis(imino-3,1-(4-
methylphenylene)carbonylimino))bis(1-methoxynaphtha-
lene-3,5-disulfonic acid) tetrasodium salt (NF776), and
6,6�-(carbonylbis(imino-3,1-phenylenecarbonylimino-3,1-
(4-methyl-phenylene)carbonylimino))bis(1-methoxy-naph-
thalene-3,5-disulfonic acid) tetrasodium salt (NF778) have
been shown to act as nanomolar P2X2R antagonists (Wolf
et al., 2011). RB-2 inhibits P2X2R with an IC50 value of 0.4
�M (Liu et al., 2001a). When tested in the same experi-
ment, RB-2 was more potent than TNP, which was more
potent than suramin (Liu et al., 2001a). Native rP2X2Rs
expressed in pituitary gonadotrophs are also inhibited by
RB-2 (Zemkova et al., 2006).

P2X1 and P2X2 subunits can generate heteromeric
receptors expressed at the plasma membrane (Aschrafi
et al., 2004). Their biophysical and pharmacological pro-
files have been incompletely characterized. The profile of
heteromers seems to resemble the current profile gener-
ated by homomeric P2X1R; however, the heteromers
exhibit an acid sensitivity different from that of both
P2X1R and P2X2R (Brown et al., 2002).

3. Homomeric P2X3 Receptor and Heteromeric P2X2/3
Receptor. The gene encoding the P2X3R subunit was
originally cloned from dorsal root ganglion (DRG) sensory
neurons (Chen et al., 1995; Lewis et al., 1995). These
neurons also express mRNA transcripts for the P2X2 sub-
unit, and the native channels are probably P2X2/3R het-
eromers (Lewis et al., 1995). The distribution of homomeric
rP2X3R and heteromeric P2X2/3R is highly restricted, oc-
curring in the dorsal root, trigeminal, and nodus sensory
ganglia (Vulchanova et al., 1997; Bradbury et al., 1998;
Dunn et al., 2001). The receptor expressed in trigeminal
sensory neurons is up-regulated by calcitonin gene-related
peptide (Fabbretti et al., 2006). The hP2X3R was cloned
from heart tissue, but transcripts for this receptor are also
present in the spinal cord (Garcia-Guzman et al., 1997b).

Homomeric and heteromeric P2X3Rs play an impor-
tant role in nociceptive transmission and mechanosen-
sory transduction within visceral organs (Galligan,
2004; Ford et al., 2006). Pharmacological studies have
shown that peripheral and spinal P2X3Rs and P2X2/3Rs
are involved in transmitting persistent, chronic inflam-
matory, and neuropathic pain signals (Gever et al.,
2006). Studies of P2X3R gene knockouts and transient
gene disruption by antisense P2X3R have revealed sim-

ilar findings (Cockayne et al., 2000; Souslova et al.,
2000). The P2X2(	/	), P2X3(	/	), P2X2/P2X3Dbl(	/	)
knockout mice were also used to investigate for the role
of ATP signaling on the function of oxygen-sensitive
chemoreceptor cells in the carotid body. These studies
showed that a deficiency of the P2X2 subunit, but not
P2X3, resulted in an attenuated ventilatory response to
hypoxia and an impaired response of the afferent carotid
sinus nerve to a oxygen decrease (Rong et al., 2003).
Later, ATP was identified as the neurotransmitter link-
ing taste buds to the gustatory nerves. This response is
mediated through a combination of P2X2 and P2X3 sub-
units, because deleting either subunit alone did not re-
sult in the profound deficit in taste-mediated behaviors
seen in the double deletion P2X2/P2X3Dbl(	/	) (Finger
et al., 2005; Eddy et al., 2009). In other studies with
knockout mice, heteromeric P2X2/3 receptors were
shown to contribute to nociceptive responses and mecha-
nosensory transduction within the urinary bladder (Coc-
kayne et al., 2005), and P2X2 subunits were found to be
important for fast synaptic excitation in myenteric neu-
rons of the mouse small intestine (Ren et al., 2003).

P2X3Rs generate fast, rapidly activating, and acutely
desensitizing inward currents. In contrast to rP2X1R
currents, rP2X3R currents do not desensitize completely
during sustained agonist application (Fig. 3A). The rate
of receptor desensitization is determined by the agonist
concentration (Fig. 3, A and B), and at low agonist con-
centrations, the deactivation kinetics of the receptor can
be analyzed (Fig. 3B). These experiments clearly show
that the deactivation of rP2X3R is relatively rapid, oc-
curring on a time scale of seconds (Zemkova et al., 2004),
and does not determine the recovery kinetics of the
receptor, which occur on a time scale of minutes (Fig. 3,
C and D). Further studies revealed the presence of two
types of receptor desensitization (Sokolova et al., 2006).
As with rP2X4R (Yan et al., 2006), the fluorescently
labeled rP2X3 subunits form fully functional channels
that have biophysical and pharmacological properties
highly comparable with those of the wild-type receptor
(Grote et al., 2005).

Table 3 summarizes the pharmacological profile of
homomeric P2X3Rs. ATP is a full agonist for rP2X3R
with estimated EC50 values of 1.2 �M (Chen et al.,
1995), 2.6 �M (Pratt et al., 2005), 4.1 �M (Asatryan et
al., 2008), and 7.3 �M (Grote et al., 2005), but the pre-
cision of these estimates is limited by profound desensi-
tization (Khmyz et al., 2008). Similar to the rP2X1R,
��-meATP is a full agonist at rP2X3R, acting with a
potency similar to (Pratt et al., 2005; Asatryan et al.,
2008) or slightly lower than (Chen et al., 1995) that of
ATP. 2-meSATP is also a full agonist for this receptor,
whereas ATP�S acts as a partial agonist (Lewis et al.,
1995; Liu et al., 2001a). Native (Jarvis et al., 2001) and
recombinant (He et al., 2002) rP2X3Rs are also activated
by BzATP. Native receptors present in neurons of the rat
DRG show a similar agonistic profile (Rae et al., 1998).
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Ap4A, Ap5A, and Ap6A are also full agonists for rP2X3R
with estimated EC50 values of 0.8, 1.3, and 1.6 �M,
respectively (Wildman et al., 1999a). Ap5G and Ap6G
also activate rP2X3R (Cinkilic et al., 2001). At hP2X3Rs,
2-meSATP is the most potent agonist (320 nM), followed
by ATP (780 nM), ��-meATP (2.55 �M), CTP (17.9 �M),
and ��-meATP (�100 �M) (Garcia-Guzman et al.,
1997b).

Suramin and PPADS inhibit P2X3R (Lewis et al.,
1995), but these antagonists have relatively low poten-
cies for this receptor compared with other P2XRs (Ja-
cobson et al., 2006). The suramin derivates NF023,
NF279, and NF449 also antagonize P2X3R-mediated
currents. P2X3Rs have an intermediate sensitivity to
NF023, with IC50 values of 8 and 29 �M for rat and
human subtypes, respectively (Soto et al., 1999). NF279
inhibits rP2X3R with IC50 values of 1.6 �M with prein-
cubation and 85 �M when applied together with agonist
(Rettinger et al., 2000). NF449 also inhibits rP2X3R
with an IC50 value of approximately 3 �M, in contrast to
the subnanomolar concentrations needed to inhibit
P2X1R, indicating that it could be used to distinguish
between these biophysically comparable channels in na-

tive tissues (Braun et al., 2001; Kassack et al., 2004;
Horner et al., 2005). Several PPADS derivatives also
inhibit P2X3R currents (Brown et al., 2001; Kim et al.,
2001).

Because of the involvement of P2X3R in pain path-
ways, there have been numerous efforts to develop
P2X3R-selective drugs. TNP-ATP strongly inhibits
rP2X3R currents with an IC50 value of around 1 nM, and
the effect of this compound was mimicked by TNP-ADP
and TNP-AMP. TNP-ATP is approximately 1000 times
less effective in cells expressing P2X2R, P2X4R, and
P2X7R, indicating that it could be effectively used to
inhibit P2X1R, P2X3R, and P2X2/3R-mediated re-
sponses (Virginio et al., 1998b). However, this compound is
of limited use for in vivo experiments because of its rapid
degradation by ectonucleotidases (Lewis et al., 1998). A com-
pound named A317491 (5-[[[(3-phenoxyphenyl)methyl][(1S)-
1,2,3,4-tetrahydro-1-naphthalenyl]amino]carbonyl]-1,2,4-
benzenetricarboxylic acid sodium salt hydrate) seems to
satisfy this requirement. The dissociation equilibrium con-
stant for this compound is in the range of 10 to 100 nM. The
compound also inhibits heteromeric P2X2/3Rs but is ineffec-
tive at a wide range of other receptors and channels; the R
enantiomer, A317344, has no activity (Jarvis et al., 2002;
North, 2004).

The heteromeric P2X2/3Rs exhibit pharmacological
properties similar to those of P2X3R, including sensitiv-
ity to ��-meATP and a similar rank order of agonist
potencies, but they can be distinguished from homo-
meric P2X3Rs by the slow desensitization rate (Koshi-
mizu et al., 2002). Selective agonists for P2X2/3R are
Ap5A � ��-meATP �� ��-ATP � UTP (Liu et al.,
2001a). ATP�S and 2-meSATP also activate these het-
eromers (Lewis et al., 1995). The probable composition of
this trimeric channel is P2X2(P2X3)2 (Jiang et al., 2003),
which probably explains why the heteromeric receptor is
more tolerant of the �� and �� substitution (Spelta et
al., 2003). The sensitivity of P2X2/3R to ��-meATP pro-
vides an easy way to identify these channels, because
this agonist does not activate P2X2Rs at low micromolar
concentrations. In addition, P2X2/3Rs desensitize slowly
in contrast to the rapid desensitization of P2X3R.

Selective antagonists for P2X2/3R are TNP-ATP ��
suramin � RB-2 (Liu et al., 2001a). All inhibitors of
P2X3R also inhibit P2X2/3R but are poor inhibitors of
P2X2R. In most cases, the inhibition of P2X2/3 hetero-
mers is slightly less effective than the inhibition of
P2X3R homomers. rP2X2/3Rs have sensitivity to NF023
similar to that of homomeric P2X3Rs (Soto et al., 1999).
In contrast to the homomeric rP2X2R, the activity of this
heteromer is inhibited by TNP-ATP with an IC50 value
of 7 nM (Virginio et al., 1998b). Concentrations of NF449
that are 3 to 4 orders of magnitude higher are required
to block heteromeric P2X2/3Rs compared with homo-
meric and heteromeric P2X1Rs (Rettinger et al., 2005).
However, the ��-meATP-induced currents and calcium
signals through recombinant and native P2X2/3Rs are

FIG. 3. Characterization of rP2X3R. A, the rates of receptor desensi-
tization. Notice the presence of the residual current during sustained
agonist application. B, patterns of P2X3R current responses during re-
petitive stimulation with 10 nM ATP. C, time course of recovery from
desensitization.
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slowly desensitizing, in contrast to homomeric P2X3Rs
(Lewis et al., 1995; Burgard et al., 1999; Liu et al.,
2001a; Koshimizu et al., 2002).

Several new inhibitors have recently been introduced.
Spinorphin, an endogenous antinociceptive peptide
(LVVYPWT), seems to be a potent and noncompetitive
antagonist at hP2X3Rs (IC50 � 8.3 pM). The antagonistic
properties are sustained when single alanine substitutions
were made from the 1st to 4th amino acids and when the
cyclic form of LVVYPWT was introduced (Jung et al.,
2007). Two diaminopyrimidines, 5-[5-iodo-4-methoxy-2-(1-
methylethyl)phenoxy]-2,4-pyrimidine diamine hydrochloride
[RO-4, also known as AF-353 (Carter et al., 2009)] and 5-(5-
ethynyl-2-isopropy-4-methoxy-phenoxy)-pyrimidine-2,4-
diamine [RO-5, also known as AF-729) (Jahangir et al.,
2009)], inhibit rP2X3Rs and hP2X2/3Rs at nanomolar con-
centrations. RO-5 also inhibits native presynaptic P2X3Rs
and P2X2/3Rs (Kaan et al., 2010). 1-Methyl-3-phenyl-1H-
thieno[2,3-c]pyrazole-5-carboxylic acid [(R)-2-(4-acetyl-
piperazin-1-yl)-1-methyl-ethyl]-amide (RO-85) has demon-
strated selectivity for P2X3Rs (IC50 � 30 nM) over
heteromeric P2X2/3Rs (IC50 � 400 nM) and other P2XRs
(IC50 � 10 �M), indicating the pharmacological possibility to
distinguish between homomeric and heteromeric P2X3Rs

(Brotherton-Pleiss et al., 2010). Finally, AF-353 inhibits
hP2X3R (IC50, 10 nM), rP2X3R (IC50, 10 nM), and hP2X2/3R
(IC50, 38 nM) at low nanomolar concentrations (Gever et al.,
2010).

4. Homomeric P2X4 Receptor and Heteromeric P2X1/4
Receptor. This receptor was identified as a distinct mem-
ber of the P2XR family when it was shown that a single
gene product was sufficient to generate to ion channels
with distinct patterns and pharmacological properties (Bo
et al., 1995; Buell et al., 1996; Soto et al., 1996). Homomeric
rP2X4Rs bathed in physiological solutions activated rap-
idly, desensitized at a moderate rate, and displayed in-
wardly rectifying current-voltage relationships that re-
versed at 0 mV (Khakh et al., 1999a; Fountain and
North, 2006). Figure 1 shows a typical pattern of
ATP-induced current (A) and the dependence of recep-
tor activation, desensitization, and deactivation kinet-
ics on agonist concentration (B).

P2X4Rs are widely expressed in the brain, spinal cord,
and autonomic and sensory ganglia (Rubio and Soto,
2001; Burnstock and Knight, 2004; Burnstock, 2007;
Surprenant and North, 2009). They are also expressed
in the anterior pituitary gland, specifically in lac-
totrophs, and their activation leads to the stimulation of

TABLE 3
Pharmacological Profile of P2X3R

EC50/IC50 values are micromolar unless otherwise specified.

Compound Method EC50/IC50 References

Full agonists
ATP Current 1 Lewis et al., 1995; Chen et al., 1995
��-meATP Current 1–2 Lewis et al., 1995; Chen et al., 1995
2-meSATP Current 0.3 Lewis et al., 1995; Chen et al., 1995; Garcia-Guzman et al., 1997
Ap6A Current 1.5 Wildman et al., 1999a
Ap5A Current 1 Wildman et al., 1999a
Ap4A Current 1 Wildman et al., 1999a

Partial agonists
ATP�S Current 10 Liu et al., 2001
BzATP Calcium N.D. Jarvis et al., 2001; He et al., 2002
��-meATP Current �300 Chen et al., 1995

Antagonists
Suramin Current 3 Lewis et al., 1995
PPADS Current 1.5 Lewis et al., 1995
TNP-ATP Current 1 nM Virginio et al., 1998b
A-317491 Current/Ca2� 20 nM Jarvis et al., 2002
NF023 Current 8.5 Soto et al., 1999
NF279 Current 2 Rettinger et al., 2000
NF449 Current 3 Braun et al., 2001
RO-85 Calcium 30 nM Brotherton-Pleiss et al., 2010
Ip4I Current 1 King et al., 1999
MRS2159 Current 150 nM Kim et al., 2001
MRS2257 Current 30 nM Kim et al., 2001
AF-353 Current/Ca2� 10 nM Gever et al., 2010
RO-4 Calcium 13 nM Carter et al., 2009
RO-51 Calcium 10 nM Jahangir et al., 2009

Modulators
Protons (	) Current pKa 6.0 Stoop et al., 1997; Gerevich et al., 2007
Calcium (	) Current 90 mM Virginio et al., 1998a
Zinc (�) a Current 10 Wildman et al., 1999b
Cadmium (	) Current 100 Nakazawa and Ohno, 1997
Ethanol (�) Current 25 mM Davies et al., 2005a
Cibracon Blue (�) Current/Ca2� 1.5 Alexander et al., 1999
Toluene (	) Current 3 mM Woodward et al., 2004
Tetramethylpyrazine Current 1 mM Gao et al., 2008
Cdk-5 (	) Current Nair et al., 2010
Csk (	) Current D’Arco et al., 2009

N.D., not determined; (�), positive modulator; (	), negative modulator; Cdk-5, cyclin-dependent kinase 5; Src, C-terminal Src kinase.
a Biphasic effects, suggesting the existence of more than one allosteric site.
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electrical activity, promotion of voltage-gated and volt-
age-insensitive Ca2� influx and prolactin release (He
et al., 2003a; Zemkova et al., 2010). Recent studies have
also shown that P2X4Rs are expressed in microglia and
alveolar macrophages (Bowler et al., 2003) and that the
up-regulation of these receptors in activated microglia
located in the dorsal horn of the spinal cord contributes
to neuropathic pain (Tsuda et al., 2003; Ulmann et al.,
2008). Immortalized C8-B4 cells derived from cerebellar
microglia also express P2X4Rs and were used to show
that antidepressants indirectly inhibit the receptor-me-
diated responses by interfering with lysosomal traffick-
ing (Toulme et al., 2010). In addition, P2X4Rs are pres-
ent in human lung mast cells (Wareham et al., 2009) and
PC12 cells (Sun et al., 2007). The P2X4R knockout mice
have high blood pressure, probably reflecting the role of
these channels in the regulation of the vascular tone on
endothelial cells (Yamamoto et al., 2006) and show re-
duced amplitudes in long-term potentiation in the hip-
pocampus (Sim et al., 2006). Experiments with the
P2X4R-deficient mouse line also revealed the potential
involvement of this receptor in ATP-mediated brain-
derived neurotrophic factor microglial secretion and
neuropathic pain (Ulmann et al., 2008). The native
P2X4R and P2X7R currents are seen in recruited peri-
toneal macrophages of wild-type mice, and P2X4R inac-
tivation in a mouse line eliminated the P2X4-like cur-
rent, suggesting an immunologic role for this receptor
(Brône et al., 2007).

Green fluorescent protein-tagged receptors were used
to show that P2X4Rs, but not P2X2Rs, undergo rapid
constitutive internalization and subsequent reinsertion
into the plasma membrane in a dynamin-dependent
manner. Internalization of P2X4/6 heterodimers was
also observed, suggesting that one or two P2X4 subunits
are sufficient to govern the trafficking properties of the
receptor (Bobanovic et al., 2002). The C-terminal
YXXGL motif serves as a noncanonical tyrosine-based
sorting signal that is necessary for efficient endocytosis
of this receptor (Royle et al., 2002). P2X4R rundown is
evident after repetitive stimulation in a whole-cell con-
figuration. This effect is completely prevented with the
use of a perforated patch, indicating that small cytosolic
factors that are lost during intracellular dialysis could
be important in the trafficking of this receptor (Fountain
and North, 2006). Endogenous P2X4Rs in cultured rat
microglia, vascular endothelial cells, and freshly pre-
pared peritoneal macrophages are localized predomi-
nantly to lysosomes, where the receptors can retain their
function and subsequently travel out to the plasma
membrane (Qureshi et al., 2007). Unstimulated macro-
phages express very low levels of functional P2X4Rs, but
expression of these receptors at the plasma membrane
was enhanced by the activation of phagocytosis (Stokes
and Surprenant, 2009).

The pharmacological profile of P2X4R is shown in
Table 4. This receptor is activated by ATP with esti-

mated EC50 values of 3 �M (Yan et al., 2005; Yan et al.,
2006), 4 to 5 �M (Zemkova et al., 2007; Jelínkova et al.,
2008; Jindrichova et al., 2009), 7 �M (Soto et al., 1996),
and 10 �M (Bo et al., 1995; Buell et al., 1996). Under
similar experimental conditions, the potency of ATP at
the mouse, rat, and human P2X4R was comparable,
ranging between 1 and 8 �M (Garcia-Guzman et al.,
1997a; Bianchi et al., 1999; Jones et al., 2000). 2-
meSATP also activates rP2X4Rs with a potency similar to
or lower than ATP (Buell et al., 1996; Soto et al., 1996).
��-meATP and Ap4P are partial agonists for mouse, rat,
and human receptors (Jones et al., 2000). The rP2X4R is
activated by nucleotide analogs with the following order
of efficacy: ATP � ATP�S � 2-meSATP � CTP � ��-
meATP. In calcium measurements, the potency order
was ATP � BzATP � ��-meATP (He et al., 2003c). The
human receptor displays an agonist potency profile sim-
ilar to that of rP2X4R (Garcia-Guzman et al., 1997a;
Jones et al., 2000). Ap4A acts as a partial agonist for
mouse, rat, and human P2X4Rs, whereas other mem-
bers from this family are inactive (Wildman et al.,
1999a; Jones et al., 2000). Experiments that measure
the displacement of [35S]ATP�S from rP2X4Rs also in-
dicated that ATP is the most potent agonist, followed by
ATP�S, 2-meSATP, and ��-meATP (Michel et al., 1997).
A methanocarba derivative of AMP, 1�S,2R,3S,4�R,5�S)-
4-(6-amino-2-chloro-9H-purin-9-yl)-1-[phosphoryloxy-
methyl] bicycle[3.1.0]hexane-2,3-diol) (MRS2339), has
been found to act as a potent agonist of heart purinergic
receptors; the authors suggested that this compound
could be a P2X4R agonist (Zhou et al., 2010).

Mouse and rat P2X4Rs are insensitive to suramin.
The rP2X4R is also insensitive to PPADS, whereas the
mouse and human orthologs are inhibited by this com-
pound (Garcia-Guzman et al., 1997a; Jones et al., 2000).
TNT-ATP antagonizes the ATP-mediated currents with
an IC50 of 15 �M (Virginio et al., 1998b). Rat and human
P2X4Rs are not sensitive to NF023 in concentrations up
to 100 �M (Soto et al., 1999), and BBG is a weak receptor
antagonist (Jiang et al., 2000a). 5-(3-Bromophenyl)-
1,3-dihydro-2H-benzofuro[3,2-e]-1,4-diazepin-2-one has
been suggested to act as a specific P2X4R inhibitor with
an IC50 of 0.5 �M (Donnelly-Roberts et al., 2008). RB-2
and Coomassie blue are the most potent antagonists of
this channel, producing an inhibition of [35S]ATP�S
binding (Michel et al., 1997). Recent studies have also
suggested the potential role of some serotoninergic an-
tidepressants as P2X4R antagonists (Nagata et al.,
2009; Sim and North, 2010). Paroxetine inhibits P2X4R-
mediated currents and calcium increases with an IC50 of
2.5 and 1.9 �M at the rat and human receptor, respec-
tively (Nagata et al., 2009). In contrast, amitriptyline
modestly and noncompetitively inhibits rat and mouse
P2X4Rs and has no effect on hP2X4Rs. However, this
modest inhibition was not observed in P2X2R or P2X7R
(Sim and North, 2010), suggesting an interesting possi-
bility for the development of specific P2X4R antagonists.
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Heteromeric assembly of P2X1 and P2X4 subunits
results in a functional channel with kinetic properties
resembling homomeric P2X4Rs and a pharmacological
profile similar to homomeric P2X1R. Specifically, het-
eromers activated, desensitized, and deactivated slower
than P2X1Rs and at rates comparable with those ob-
served in cells expressing P2X4R. On the other hand, a
leftward shift in the sensitivity of heteromers to ��-
meATP was observed compared with P2X4R. Further-
more, suramin and TNP-ATP blocked both P2X1R and
P2X1/4R currents but not P2X4R currents (Nicke et al.,
2005). It is currently unclear whether the native chan-
nels assemble as heteromers.

5. Homomeric P2X5 Receptor and Heteromeric P2X1/5
Receptor. P2X5R was first cloned from rat celiac ganglia
(Collo et al., 1996). The expression of P2X5R mRNA and
protein transcripts is restricted to the trigeminal mesen-
cephalic nucleus of the brainstem, sensory neurons, cervi-
cal spinal cord, and some blood vessels. A limited amount
of the receptor was also detected in the heart, skeletal
muscle, kidney, adrenal gland, and retina (Collo et al.,
1996; Garcia-Guzman et al., 1996; Brändle et al., 1998;
Phillips et al., 1998; Gröschel-Stewart et al., 1999; Phillips

and Hill, 1999; Taylor et al., 1999; Gitterman and Evans,
2000; Ryten et al., 2001). The receptor was also detected in
carcinomas of the skin and prostate (Greig et al., 2003;
Calvert et al., 2004). In humans, the expression and func-
tion of this receptor is still unclear. The mRNA transcripts
have been detected predominantly in tissues related to the
immune system (Lê et al., 1997). The recombinant rat and
zP2X5R generates a low-amplitude nondesensitizing cur-
rent, whereas P2X5Rs from other species respond to ATP
with large, rapidly activating and slowly desensitizing cur-
rents. The recovery from desensitization is also slow (Collo
et al., 1996; Garcia-Guzman et al., 1996; Bo et al., 2000;
Jensik et al., 2001; Diaz-Hernandez et al., 2002; Wildman
et al., 2002; Bo et al., 2003). Like P2X7Rs (see section
III.A.7), the pore of human, chick, and bullfrog P2X5Rs
dilates during prolonged receptor activation (Bo et al.,
2000, 2003; Jensik et al., 2001).

ATP is a full agonist for this receptor (Table 5) with
estimated EC50 values of 0.4 �M (Wildman et al., 2002)
and 8 �M (Garcia-Guzman et al., 1996) for rP2X5R, 0.3
�M (Kotnis et al., 2010) and 4 �M (Bo et al., 2003) for
hP2X5R, and 2 �M for chicken P2X5R (Ruppelt et al.,
2001). The potency order at the rP2X5R is ATP � 2-

TABLE 4
Pharmacological profile of P2X4R

EC50/IC50 values are micromolar unless otherwise specified.

Compound Method EC50/IC50 References

Full agonists
ATP Current 1–10 Buell et al., 1996; Soto et al., 1996; Jones et al., 2000
BzATP Calcium 3 He et al., 2003a

Partial agonists
2-meSATP Current 10–100 Buell et al., 1996; Soto et al., 1996; Jones et al., 2000
��-meATP Current 4–300 Buell et al., 1996; Soto et al., 1996; Jones et al., 2000
��-meATP Current �300 Soto et al., 1996
CTP Current 200 Soto et al., 1996
Ap4P Current 2–10 Wildman et al., 1999a; Jones et al., 2000

Antagonists
Suramin Current �300 Buell et al., 1996; Soto et al., 1996
PPADS Current �300 Buell et al., 1996; Soto et al., 1996
TNP-ATP Current 15 Virginio et al., 1998b
5-BDBD Current 0.5 Donnelly-Roberts et al., 2008
NF023 Current �100 Soto et al., 1999
BBG Current 3–100 Jiang et al., 2000a
Paroxetine Current/Ca2� 2 Nagata et al., 2009

Modulators
Protons (	) Current pKa 7.0c Stoop et al., 1997; Clarke et al., 2000; Yan et al., 2005
Calciuma Current 1 mM Khakh et al., 1999a
Zinc (�)b Current 5 Soto et al., 1996; Xiong et al., 1999; Acuña-Castillo et al., 2000; Coddou et al., 2007
Cooper (	) Current 10 Acuña-Castillo et al., 2000; Coddou et al., 2003; Coddou et al., 2007
Cadmium (�)b Current 20 Acuña-Castillo et al., 2000; Coddou et al., 2005
Mercury (	) Current 10 Coddou et al., 2005; Coddou et al., 2009
H2O2 (	) Current 300 Coddou et al., 2009
CO (	) Current N.D. Wilkinson et al., 2009
IVM (�) Current 3 Khakh et al., 1999b; Priel and Silberberg, 2004; Jelínkova et al., 2006; Silberberg et al., 2007
Alfaxalone (�) Current 0.4 nM Codocedo et al., 2009
ALP (�) Current 0.3 nM Codocedo et al., 2009
THDOC (�) Current 0.1 nM Codocedo et al., 2009
PIPs (�) Current N.D. Bernier et al., 2008b
Ethanol (	) Current 60 mM Xiong et al., 2000; Davies et al., 2002;
Cibacron blue (�) Current 3 Miller et al., 1998
Propofol (�) Current 50 Tomioka et al., 2000
Toluene (�) Current 1 mM Woodward et al., 2004
PKA (�) Current/Ca2� Brown and Yule, 2010

(�), positive modulator; (	), negative modulator; N.D., not determined; ALP, allopregnanolone; THDOC, 3�,21-dihydroxy-5�-pregnan-20-one; PIPs, phosphoinositides;
5-BDBD, 5-(3-bromophenyl)-1,3-dihydro-2H-benzofuro
3,2-e�-1,4-diazepin-2-one.

a In the absence of calcium, a secondary current is developed in P2X4Rs.
b Biphasic effects, suggesting the existence of more than one allosteric site.
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MeSATP � ATP�S � ��-meATP � BzATP, with ��-
meATP and BzATP acting as partial agonists. Ap2A,
Ap4A, Ap5A, and Ap6A are also partial agonists for this
receptor (Wildman et al., 2002). At hP2X5R, concentra-
tion-response curves for ATP, BzATP, and ��-meATP
yield EC50 values of approximately 4, 6, and 161 �M,
and BzATP, ��-meATP, and 2-meSATP are partial ago-
nists (Bo et al., 2003). Others observed a higher potency
for ��-meATP at hP2X5R with an EC50 value of approx-
imately 12 �M (Kotnis et al., 2010). At the rP2X5R, the
potency order for five antagonists was PPADS � TNP-
ATP � suramin � RB-2 �� Ip5I (Wildman et al., 2002).
At hP2X5R, PPADS, BBG, and suramin inhibited the
ATP-evoked currents with IC50 values of 0.2, 0.5, and 2.9
�M, respectively (Bo et al., 2003). TNP-ATP and
suramin also inhibited the ATP-evoked currents at
hP2X5R (Kotnis et al., 2010).

Many of the tissues expressing P2X5R also express
other isoforms, including the P2X1 subunit, which
raised the possibility of heteromeric expression. Consis-
tent with this, several laboratories have found expres-
sion of heteromeric P2X1/5Rs (Torres et al., 1998;
Haines et al., 1999; Lê et al., 1999; Surprenant et al.,
2000). From a biophysical standpoint, this heteromer
more closely resembles the P2X5R, because it generates
a nondesensitizing plateau in current. Like P2X1R, how-
ever, the heteromers are activated by ��-meATP (Torres
et al., 1998; Lê et al., 1999). ATP activates these hetero-
mers with an EC50 value of 0.7 �M (Haines et al., 1999).
2-meSATP is also the full and equipotent agonist for
heteromeric P2X1/5R, whereas ATP�S and ��-meATP
are partial agonists. Suramin and PPADS are equipo-
tent at P2X1R and P2X1/5R, but the heteromer is less
sensitive to TNP-ATP (Haines et al., 1999). NF449 also

potently inhibits rP2X1/5R with an IC50 value of 0.7 nM
(Rettinger et al., 2005). The native channel in guinea pig
submucosal arterioles is biophysically and pharmacolog-
ically similar to the recombinant P2X1/5R (Surprenant
et al., 2000). Mouse cortical astrocytes express mRNAs
for P2X1R and P2X5R subunits, and the high sensitivity
to ATP, biphasic kinetics, and inhibition by PPADS were
also comparable with the responses seen in recombinant
P2X1/5Rs (Lalo et al., 2008).

6. Homomeric P2X6 Receptor and Heteromeric P2X2/6
and P2X4/6 Receptors. The expression and immunoreac-
tivity of P2X6R mRNA are seen throughout the central
nervous system, including Purkinje cells in the cerebellum
and pyramidal cells in the hippocampus (Collo et al., 1996;
Rubio and Soto, 2001; Burnstock and Knight, 2004). Ex-
pression of this receptor has also been reported in sensory
ganglia (Xiang et al., 1998), skeletal muscle (Meyer et al.,
1999), uterus and granulose cells of the ovary (Collo et al.,
1996), thymus (Glass et al., 2000), and the human salivary
gland (Worthington et al., 1999). Up-regulation of this
receptor has been detected in human heart tissue from
patients with congestive heart failure (Banfi et al., 2005).
The P2X6R subunit expressed alone generates functional
membrane receptors very inefficiently (Collo et al., 1996;
Lê et al., 1998; King et al., 2000; Koshimizu et al., 2000b;
Jones et al., 2004).

This receptor seems to have higher sensitivity for ATP
and 2-meSATP and is inhibited by TNP-ATP and
PPADS (Jones et al., 2004). The current response was
described as nondesensitizing and may be either sensi-
tive (Jones et al., 2004) or insensitive (Collo et al., 1996)
to ��-meATP. This could reflect differences in hetero-
merization with endogenous P2XR subunits (Jones et
al., 2004). At first, it was believed that the low expres-

TABLE 5
Pharmacological profile of P2X5R

EC50/IC50 values are micromolar unless otherwise specified.

Compound Method EC50/IC50 References

Full agonists
ATP Current 0.5–4 Wildman et al., 2002; Bo et al., 2003
2-meSATP Current 0.5 Wildman et al., 2002
ATP�S Current 0.5 Wildman et al., 2002

Partial agonists
��-meATP Current 1–12 Wildman et al., 2002; Kotnis et al., 2010
��-meATP Current 10 Wildman et al., 2002
BzATP Current 1–6 Wildman et al., 2002; Bo et al., 2003
Ap3A Current 5 Wildman et al., 2002
Ap4A Current 0.3 Wildman et al., 2002
Ap5A Current 0.7 Wildman et al., 2002
Ap6A Current 5 Wildman et al., 2002

Antagonists
Suramin Current 2–3 Wildman et al., 2002; Bo et al., 2003
PPADS Current 200–600 nM Wildman et al., 2002; Bo et al., 2003; Kotnis et al., 2010
TNP-ATP Current 600–700 nM Wildman et al., 2002; Kotnis et al., 2010
BBG Current 0.5 Bo et al., 2003

Modulators
Protons (	) Current Wildman et al., 2002
Calcium (	)a Current 10 mM Wildman et al., 2002
Zinc (�)b Current 10 Wildman et al., 2002

(�), positive modulator; (	), negative modulator.
a In addition, a sensitization of ATP-evoked currents is observed with calcium.
b Biphasic effects, suggesting the existence of more than one allosteric site.
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sion in the plasma membrane was due primarily to a
failure to form the proper homomers (Aschrafi et al.,
2004). It has also been suggested that the protein could
be expressed in the plasma membrane in a partially
glycosylated state and that further glycosylation would
yield a functional channel (Jones et al., 2004). Later
studies indicated that an uncharged region of the P2X6R
N terminus is responsible for receptor retention at the
endoplasmic reticulum. When the charges were intro-
duced by mutagenesis, the mutant receptors were able
to form homotrimers and to glycosylate and were deliv-
ered to the membrane (Ormond et al., 2006).

Subsequent studies confirmed that rat P2X2 and
P2X6 subunits form functional heteromers that have a
somewhat different phenotype from homomeric P2XRs.
This includes a reduction in ATP potency, a significant
loss of Ap4A activity, and a distinct pattern of pH regu-
lation. The rank order of agonist activation for these
heteromers is highly comparable with that observed for
P2X2Rs: ATP � ATP�S � 2-meSATP �� BzATP � ��-
meATP. The heteromer is also sensitive to inhibition by
suramin, similar to the homomeric P2X2R (King et al.,
2000). Both (P2X2)2P2X6 and P2X2(P2X6)2 composi-
tions of heteromeric channels have been detected (Bar-
rera et al., 2007). The rat P2X6 subunit also forms
functional heteromers with the P2X4 subunit that are
pharmacologically similar to P2X4R. These heteromers
exhibit sensitivity to ATP and 2-meSATP similar to that
of homomeric P2X4Rs, are activated by low micromolar
��-meATP concentrations, and are blocked by suramin
and RB-2 (Lê et al., 1998). Allosteric regulation of this
heteromer resembles the regulation of P2X4Rs.

7. Homomeric P2X7 Receptor. The P2X7R subunit,
initially cloned from a rat brain cDNA library, shares an
overall membrane topology with the other members of
this family of receptors (Surprenant et al., 1996). The
receptor is distinguished structurally from other mem-
bers of P2XRs by its long intracellular C terminus tail
containing multiple protein and lipid interaction motifs
and a cysteine-rich 18 amino acid segment. These recep-
tors are expressed on cells of the immune system, such
as macrophages/monocytes, dendritic cells, lympho-
cytes, and mast cells, as well as in glia cells, including
microglia, astrocytes, oligodendrocytes, and Schwann
cells (Collo et al., 1997; Rassendren et al., 1997b; Di
Virgilio et al., 2001, 2009; Franke et al., 2001; Chessell
et al., 2005; Skaper et al., 2010). Epithelial cells, fibro-
blasts, osteoblasts, pituitary cells, and some neuronal
populations also express P2X7Rs (Gröschel-Stewart et
al., 1999; Koshimizu et al., 2000a; Deuchars et al., 2001;
Gartland et al., 2001; Sim et al., 2004).

Two different genetically engineered P2X7-deficient
mice from Pfizer (New York, NY) and GlaxoSmithKline
(Brentford, Middlesex, UK) (Solle et al., 2001; Chessell
et al., 2005) were used to study P2X7R physiology. How-
ever, a “P2X7-like” receptor that is similar, but not iden-
tical to, “native” P2X7Rs was found in the Pfizer knock-

out mice (Sánchez-Nogueiro et al., 2005; Marín-García
et al., 2008), and a novel functional P2X7 splice variant
with an alternative exon 1 and translation start was
found in the GlaxoSmithKline knockout mice (Nicke et
al., 2009). The Pfizer P2X7R knockout mice established
the role of P2X7R in ATP-induced interleukin-1 post-
translational processing, the inflammatory response
(Solle et al., 2001; Labasi et al., 2002) and the regulation
of bone formation and absorption (Ke et al., 2003). In the
GlaxoSmithKline P2X7 knockout mice, inflammatory
(in an adjuvant induced model) and neuropathic (in a
partial nerve ligation model) hypersensitivity was abol-
ished (Chessell et al., 2005). These findings and multiple
subsequent studies became the basis for synthesizing
and developing new P2X7 antagonists into therapeutic
drugs to treat inflammatory and neuropathic pain
(Perez-Medrano et al., 2009). Clinical studies combined
with experiments using P2X7 knockout mice also high-
lighted the relevance of ATP-P2X7 cryopyrin/NALP3
caspase-1 inflammasome activation to the therapeutic
efficacy for anthracycline-treated breast cancer patients
(Ghiringhelli et al., 2009; Lamkanfi and Dixit, 2009).

Although numerous studies have been performed with
the recombinant P2X7R since it was cloned, the gating
properties of this receptor are not well understood.
P2X7R operates as a nonselective cationic channel dur-
ing initial agonist application, but with prolonged appli-
cation, the receptor also provides a permeation pathway
for molecules with molecular masses up to �800 Da,
including the fluorescent dye YO-PRO-1, a process
known as cell “permeabilization.” At first, it was sug-
gested that the bifunctional permeation properties of
P2X7R reflect a dilation of the integral pore of the chan-
nel (Surprenant et al., 1996; Chessell et al., 1997; Michel
et al., 1999; Gudipaty et al., 2001). It was further sug-
gested that a progressive dilation of the ion-conducting
pathway during prolonged agonist application is not
unique to the P2X7R, but also occurs in cells expressing
P2X2R and P2X4R (Khakh et al., 1999a; Virginio et al.,
1999).

However, this hypothesis has been questioned. One
group noticed the uptake of fluorescent dyes was not
affected in cells expressing P2X7R in which the receptor-
specific C-terminal 18 amino acid sequence was deleted,
although the mutant was not permeable to N-methyl-D-
glucamine, suggesting that YO-PRO-1 entry occurs
through a pathway separate from that of N-methyl-D-
glucamine (Jiang et al., 2005a). Others observed that
cells expressing a mutant P2X7R that was truncated at
residue 581 had negligible ethidium uptake and normal
current responses (Smart et al., 2003). It was also re-
ported that the coupling of P2X7R to pannexin-1 chan-
nels accounts for cellular entry of fluorescent dyes
(Pelegrin and Surprenant, 2006).

Recent studies have shown that naive rP2X7R acti-
vates and deactivates biphasically at higher agonist con-
centrations (Fig. 4A), and the slow secondary growth of
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current in the biphasic response coincides temporally
with pore dilation (Fig. 4B). The secondary rise in cur-
rent was observed under different ionic conditions as
well as in cells with blocked pannexin channels and in
cells not expressing these channels endogenously. Ex-
periments with several mutants further indicated that
the P2X7R dilates under physiological ion conditions,
leading to generation of biphasic current, and that this
process is controlled by residues near the intracellular
side of the channel pore (Yan et al., 2008). It has also
been shown recently that P2X2R display permeability
dynamics, which are correlated with conformational
changes in the cytosolic domain remote from the selec-
tivity filter itself (Chaumont and Khakh, 2008). Several
laboratories have also suggested that pannexins contrib-
ute to P2XR signaling by providing a pathway for re-
lease of intracellular ATP (Locovei et al., 2006; Iglesias
et al., 2009; MacVicar and Thompson, 2010; Li et al.,
2011).

In contrast to other homomeric and heteromeric
P2XRs, repetitive stimulation with the same agonist
concentration causes sensitization of P2X7R, which
manifests as a progressive increase in the current am-
plitude accompanied by a slower deactivation rate (Fig.
4C). Once a steady level of the secondary current is
reached, responses at high agonist concentrations be-
come monophasic (Fig. 4D). Both phases of response are
abolished by the application of Az10606120, a P2X7R-

specific antagonist (Fig. 4, E and F). These results fur-
ther support the conclusion that pore dilation accounts
for the secondary current growth (Yan et al., 2010).
Sensitization of the receptors caused by repetitive agonist
applications could be partially explained by calcium-CaM
signaling (Roger et al., 2008).

The pharmacological profile of mammalian P2X7Rs is
shown in Table 6. This is the least sensitive member of
the P2XR family to activation by nucleotides. BzATP is
the most potent agonist for this receptor with an EC50
value of 50 �M, compared with 3 to 4 mM for ATP. At the
sensitized receptor, the EC50 values for BzATP and ATP
are approximately 25 �M and 2 mM, respectively (Roger
et al., 2008; Donnelly-Roberts et al., 2009a; Yan et al.,
2010). Similar values have been suggested by others
(Rassendren et al., 1997b; Hibell et al., 2000; Duan et
al., 2003). The potency of ATP at the human receptor
increases when calcium and magnesium are removed
from the bath medium (Klapperstück et al., 2001).
2-meSATP and ATP�S are partial agonists of this recep-
tor, whereas ��-meATP and ��-meATP have very little
effect on activation.

An interesting feature of P2X7R is its activation by
ADP-ribosylation, a reaction that requires the enzyme
ADP-ribosyltransferase and NAD as a substrate. In T-
regulatory cells, both P2X7R and ADP-ribosyltrans-
ferase are expressed, and the activation of P2X7R by
ADP-ribosylation observed in these cells was also mim-

FIG. 4. Characterization of rP2X7R. A, concentration-dependent effects of BzATP on biphasic receptor activation. B, comparison of kinetics of the
secondary current growth and changes in the reversal potentials. C, sensitization of receptors induced by repetitive application of agonist. D, sensitized
receptors respond with monophasic currents with the peak amplitude of current determined by agonist concentration. E, abolition of rapid and
sustained P2X7R currents by the P2X7R-specific antagonist AZ10606120 (Az). F, repetitive stimulation of receptors with 100 �M BzATP in the
presence and absence of AZ10606120.
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icked in HEK293 cells cotransfected with both proteins
(Schwarz et al., 2009). The same group also showed that
the P2X7R-Arg125 residue is the target for ADP-ribosy-
lation and that this chemical modification promotes
channel gating (Adriouch et al., 2008; Schwarz et al.,
2009). It has also been suggested that this mechanism
could be relevant in regulating the functions of T-regu-
latory cells and in treatments of some tumors (Hubert et
al., 2010).

As with rP2X4R, the rP2X7R also shows a resistance
to the generally used P2 antagonist suramin (Surpre-
nant et al., 1996; Bianchi et al., 1999; Duan et al., 2003).
NF279, a suramin analog, inhibits hP2X7R with an IC50
of �3 �M, but concentrations above 100 �M are required
to inhibit rP2X7R (Klapperstück et al., 2000; Donnelly-
Roberts et al., 2009a). PPADS antagonizes the currents
and calcium signals mediated by mammalian receptors
with variable potencies ranging from 1 to 60 �M (Ches-
sell et al., 1998; Bianchi et al., 1999; Gunosewoyo et al.,
2007; Guile et al., 2009). MRS2159, a potent inhibitor of
rP2X1Rs, also inhibits mouse, rat, and human P2X7Rs
(Donnelly-Roberts et al., 2009a). Oxidized ATP is an
irreversible antagonist that requires several hours of
preincubation and concentrations of 100 to 300 �M to be
effective (Murgia et al., 1993; Surprenant et al., 1996;
Michel et al., 2000; Hibell et al., 2001). BBG also inhibits

rat and human P2X7Rs with IC50 values of approxi-
mately 15 and 250 nM, respectively (Jiang et al., 2000a;
Jacobson et al., 2002). Several blockers of calcium/CaM-
dependent protein kinase II, including calmidazolium and
1-[N,O-bis(5-isoquinolinesulfonyl)-N-methyl-L-tyrosyl]-4-
phenylpiperazine (KN-62), also inhibit the BzATP-induced
hP2X7R current. This effect is probably kinase-indepen-
dent, because the KN-04 compound is inactive toward ki-
nases but inhibits P2X7R current (Gargett and Wiley,
1997; Chessell et al., 1998; Humphreys et al., 1998; Hibell
et al., 2001; Jacobson et al., 2004).

More recently, several new compounds have been intro-
duced as potent P2X7R inhibitors. N-(1-([(cyanoimino)(5-
quinolinylamino) methyl] amino)-2,2-dimethylpropyl)-2-(3,
4-dimethoxyphenyl)acetamide (A740003) is a selective and
competitive antagonist of P2X7R-mediated calcium influx
with IC50 values of 18 and 40 nM for the rat and human
receptor and submicromolar potency at mP2X7R (Honore
et al., 2006; Donnelly-Roberts et al., 2009a). The same
group also introduced 3-[[5-(2,3-dichlorophenyl)-1H-tetra-
zol-1-yl]methyl]pyridine hydrochloride (A438079). This
compound inhibits mouse, rat, and human P2X7Rs at sub-
micromolar concentrations (Nelson et al., 2006; Donnelly-
Roberts et al., 2009a). A novel series of cyanoguanidine-
piperazine P2X7R antagonists was designed based upon
the structure of A740003 that focused on the piperazine

TABLE 6
Pharmacological profile of P2X7R

EC50/IC50 values are micromolar unless otherwise specified.

Compound Method EC50/IC50 References

Full agonists
ATP Current/Ca2� 2–4 mM Yan et al., 2010; Donnelly-Roberts et al., 2009a; Roger et al., 2008
BzATP Current/Ca2� 10 Yan et al., 2010; Donnelly-Roberts et al., 2009a

Partial agonists
��-meATP Current �300 Surprenant et al., 1996
��-meATP Current �300 Surprenant et al., 1996
2-meSATP Current 200 Surprenant et al., 1996

Antagonists
Suramin Current �300 Surprenant et al., 1996
NF279 Ca2� 3–20 Donnelly-Roberts et al., 2009a; Klapperstück et al., 2000
PPADS Current 10–45 Surprenant et al., 1996
PPNDS Ca2� 1–10 Donnelly-Roberts et al., 2009a
MRS2159 Calcium 5 Donnelly-Roberts et al., 2009a
KN-62 Ca2� 10 Donnelly-Roberts et al., 2009a
BBG Current 15–250 nM Jiang et al., 2000a
oATP Current 100–300 Surprenant et al., 1996; Michel et al., 2000; Hibell et al., 2001
A740003 Calcium 20–700 nM Honore et al., 2006; Donnelly-Roberts et al., 2009a
A438079 Current/ 0.2–1 Nelson et al., 2006; Donnelly-Roberts et al., 2009a
A804598 Ca2� 10 nM Donnelly-Roberts et al., 2009b
AZ10606120 Ethidium/Ca2� 10–200 nM Michel et al., 2007
AZ11645373 Current 5–10 nM Stokes et al., 2006

Modulators
Protons (	) Current pKa 6.1 Virginio et al., 1997; Acuña-Castillo et al., 2007; Liu et al., 2009
Calcium (	) Current 3 mM Surprenant et al., 1996; Virginio et al., 1997
Magnesium (	) Current 500 Virginio et al., 1997; Acuña-Castillo et al., 2007
Zinc (	) Current 80 Virginio et al., 1997; Acuña-Castillo et al., 2007; Liu et al., 2008a
Cooper (	) Current 2 Virginio et al., 1997; Acuña-Castillo et al., 2007; Liu et al., 2008a
PIPs (�) Current N.D. Zhao et al., 2007a,b
Propofol (�) Current 100 Nakanishi et al., 2007
Ketamine (�) Current 3 mM Nakanishi et al., 2007
GW791343 (�)a Ethidium 10 Michel at al., 2008
Calmodulin (�) Current Roger et al., 2008
LPC (�) Ca2� Takenouchi et al., 2007
Polymyxin B (�) Ca2� 0.5 �g/ml Ferrari et al., 2006

(�), positive modulator; (	), negative modulator; oATP, oxidized ATP; PIPs, phosphoinositides; N.D., not determined.
a Positive modulator at rat and negative modulator at human P2X7R (Michel et al., 2008).
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moiety and the right-hand side substitution (Morytko et
al., 2008). The compound 2-cyano-1-[(1S)-1-phenylethyl]-3-
quinolin-5-ylguanidine (A804598) inhibits mouse, rat, and
human P2X7Rs at low nanomolar concentrations (IC50 �
9–11 nM) (Donnelly-Roberts et al., 2009b).

Figure 4 shows that N-[2-[[2-[(2-hydroxyethyl)amino]
ethyl]amino]-5-quinolinyl]-2-tricyclo[3.3.1.13,7]dec-1-
ylacetamide dihydrochloride (AZ10606120) also inhibits
BzATP-induced currents at submicromolar concentrations
(Yan et al., 2010). It has been suggested that AZ10606120
binds at separate, interacting sites on the P2X7R, which
could suggest the allosteric nature of its action (Michel et
al., 2007). N2-(3,4-difluorophenyl)-N1-((2-methyl-5-(1-
piperazinylmethyl)phenyl)glycinamide dihydrochloride
(GW791343) acts as a positive allosteric regulator of
rP2X7R (Michel et al., 2008a). In contrast, 3-[1-[[(3�-
nitro[1,1�-biphenyl]-4-yl)oxy]methyl]-3-(4-pyridinyl)pro-
pyl]-2,4-thiazolidinedione (AZ11645373) is a highly selec-
tive and potent (IC50 5–10 nM) allosteric antagonist at the
human but not rat receptor (Stokes et al., 2006).

Initial coimmunoprecipitation assay suggested that
the rP2X7R does not form heteromeric assemblies (Tor-
res et al., 1999a). This conclusion was questioned by
others, who suggested formation of functional P2X4/X7
heterotrimeric receptors (Guo et al., 2007). However,
another group indicated that either heteromerization
between P2X4R and P2X7 subunits results not in stable
heteromeric complexes or P2X4/X7 heteromers do not
represent a dominant subtype in native tissues (Nicke,
2008). In immune cells, expressing P2X4R and P2X7R,
the preferred assembly pathway for both receptors is
also the formation of homotrimers. Furthermore, the
authors suggested that an interaction could occur be-
tween rather than within receptor complexes (Boumech-
ache et al., 2009).

B. Ligand Binding Domain

1. Identification of Residues Contributing to ATP
Binding. The ectodomain contains �280 amino acids,
the majority of which are conserved among the receptor
subtypes, but does not contain the consensus sequences
for agonist binding present in other ATP-sensitive pro-
teins (Evans, 2009). In an attempt to identify the candi-
date residues responsible for binding sites in this do-
main, the secondary structure similarities between
rP2X4R and class II aminoacyl-tRNA synthases were
investigated (Freist et al., 1998). This study revealed
that the receptor function was practically lost in the
K190A, R278A, and D280A mutants. However, the
model of the ATP binding site that emerged from this
study also included nonconserved residues, arguing
against a common sequence accounting for the ligand
binding (Yan et al., 2005).

Experiments with variable chimeric receptors have
provided useful information about the positions of the
ATP binding site on P2XRs. The P2X2/X3R chimeras
containing the Val60-Phe301 sequence of P2X3R instead

of the Ile66-Tyr310 sequence of P2X2R not only preserved
ATP binding but also developed two intrinsic functions
of P2X3R: sensitivity to ��-meATP and ecto-ATPase-
dependent recovery from endogenous desensitization
but not the rate of receptor desensitization (Koshimizu
et al., 2002; Zemkova et al., 2004). The corresponding
P2X2/X4R chimera showed the gain of function, as indi-
cated by increased sensitivity to ligands and faster de-
sensitization compared with both parental receptors (He
et al., 2003c). The P2X2/X7R chimera exhibited a sensi-
tivity to ATP that fell between the sensitivities observed
in cells expressing the parental receptors (He et al.,
2002). These experiments indicated that the Lys67-
Lys313 ectodomain sequence not only contains an ATP
binding domain but also accounts in part for the receptor
agonist specificity of these sites (Stojilkovic et al., 2005).

The contribution of the majority of the conserved
amino acids in this region has been studied using ala-
nine scanning mutagenesis. The most systematic inves-
tigation in this field was performed by the Evans labo-
ratory using the hP2X1R as a receptor model in which
over 120 ectodomain amino acids were replaced with
other residues. At first, they analyzed the relevance of
positively charged ectodomain residues in ATP recogni-
tion (Ennion et al., 2000). Later, they also studied the
relevance of aromatic (Roberts and Evans, 2004), struc-
tural (Ennion and Evans, 2002; Digby et al., 2005; Rob-
erts and Evans, 2005), polar (Roberts and Evans, 2006),
and negatively charged ectodomain residues (Ennion et
al., 2001). The main conclusion reached in these exper-
iments was that the majority of individual alanine sub-
stitutions have little or no effects on ATP potency at the
receptor. They identified Lys67, Lys69, Arg295, and
Lys313 (P2X4R numbering) as potential residues in-
volved in coordinating the negatively charged phosphate
group of ATP and that the adenine ring may be sand-
wiched between Phe185/Thr186 and Asn293/Phe294/Arg295

residues (Roberts and Evans, 2006). Alanine and argi-
nine substitutions of the positively charged ectodoman
residues in rP2X2R revealed that mutations at Lys67

(P2X4R numbering) were least tolerant, followed by
Lys313, Arg295, Arg309, and Lys69 (Jiang et al., 2000b).
For rP2X4R, the order was Lys67, Lys 313, Arg295, Lys190,
and Phe185 (Zemkova et al., 2007). Replacement of Lys69

with alanine also affected the receptor function (Roberts
et al., 2008). The relevance of Lys67, Lys69, Arg295, and
Lys313 (P2X4R numbering) with regard to agonist po-
tency was also identified in hP2X3R (Fischer et al.,
2007).

The breakthrough in understanding the structure of
the ATP binding site came with the finding that it is
localized between two subunits. The first evidence sup-
porting this view was provided by Wilkinson et al. (2006)
using the wild-type and K67A and K313A mutants
(P2X4R numbering). The work of Marquez-Klaka et al.
(2007) further supported the hypothesis that the inter-
face between the subunits is important for the formation
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of the ATP binding site. Specifically, this group showed
that a disulfide bond could form between K67C and
F294C from two adjacent subunits.

The pharmacology of the P2XRs discussed above pro-
vides additional insights into the structure of P2XRs.
For example, the lack of ADP effects at P2XRs indicates
that the coordination/detection of the three phosphate
residues, but not the adenine ring or ribose, plays a
dominant role in determining the affinity of drugs for
the ATP binding site. Consistent with this view, longer
chain phosphates, such as adenosine tetraphosphate
and the diadenosine polyphosphates, also act as agonists
(Lewis et al., 2000). The Lys138 residue of hP2X1R seems
to account for the high potency of suramin and its analog
NF449 at this receptor compared with rP2X1R (Sim et
al., 2008). The exchange of one Lys246 to the equivalent
position in the P2X2R (Glu249) transfers the PPADS
sensitivity (Buell et al., 1996). In hP2X7R, Phe95 is re-
quired for the high sensitivity to the allosteric modula-
tors GW791343 and SB203580 (Michel et al., 2009). The
ADP-ribosylation of Arg125 is sufficient to activate this
receptor (Adriouch et al., 2008).

Together, these extensive investigations suggest that
P2XRs share a similar agonist binding site with some
variations in the binding pocket or gating, which ac-
count for receptor specificity in agonist and antagonist
binding/receptor gating. Eight residues have the poten-
tial to contribute to the formation of the ATP binding
site: Lys67, Lys69, Phe185, Thr186, Asn293, Phe294, Arg295,
and Lys313 (P2X4R numbering). All of these residues are
also present in distantly related P2XRs (algae, slime
mold amoebae, and choanoflagellates) (Surprenant and
North, 2009). Positively charged lysines seem to coordi-
nate the binding of the negatively charged phosphate
tail of ATP, whereas aromatic phenylalanine residues
could coordinate the binding of the ATP adenine ring
directly or indirectly.

2. Number of Occupied Binding Sites Necessary to
Channel Activation. An interesting question about
P2XRs is how many molecules of ATP are necessary to
open a channel. Early studies of ATP-evoked currents in
rat and bullfrog neurons suggested that three molecules
of ATP were required for channel gating. This was based
on the superlinearity of currents versus agonist concen-
tration observed at low ATP concentrations (Bean et al.,
1990). Single-channel experiments also suggested that
the binding of three ATP molecules was required to
activate the P2X2R (Ding and Sachs, 1999). However,
other reports have suggested that the binding of two
(Friel and Bean, 1988; Friel, 1988) or even one molecule
of ATP (Krishtal et al., 1983) is sufficient to activate
channels.

After the cloning of P2XRs, a great effort was made to
determine the stoichiometry of the functional channel.
Diverse experimental approaches suggested that the
channel was composed of three P2X subunits (Nicke et
al., 1998; Stoop et al., 1999; Jiang et al., 2003; Barrera et

al., 2005, 2007; Young et al., 2008). The crystallization of
the zP2X4.1R confirmed that the channel is composed of
three subunits (Kawate et al., 2009), suggesting that it
should contain three binding sites for ATP. Moreover, as
discussed in the previous section, ATP binding sites are
located at the interface of neighboring subunits, each
contributing residues that are necessary for adenine and
phosphate interactions (Marquez-Klaka et al., 2007;
Roberts and Evans, 2007).

However, the heteromeric P2X2/3R requires only two
functional binding sites. This has been derived from
separate studies in which the Hill slope at low ATP
concentrations indicates the binding of two ATP mole-
cules (Jiang et al., 2003). In addition, the mutation of
ATP-binding residues on the P2X2 subunit results in
functional channels when they are coexpressed with
P2X3 subunits (Wilkinson et al., 2006), suggesting that
the disruption of only one binding site is not sufficient to
shut down channel function (P2X2/3Rs are composed
from two P2X3 and one P2X2 subunits). The same group
also showed that mutations at Lys68 or Lys308 (P2X2R
numbering) resulted in nonfunctional receptors. Sur-
prisingly, when these two mutants were coexpressed,
small but consistent ATP-mediated currents were ob-
served, suggesting that channels containing subunits
with different mutations can form at least one intersub-
unit binding site, and these channels account for the
small currents (Wilkinson et al., 2006). We have char-
acterized the gating of P2X7R, combining experimental
data with a mathematical model that could explain the
different activation states of this channel with the occu-
pancy of two or three ATP binding sites (Yan et al.,
2010).

3. Orthosteric Sites in the Context of the P2X4.1 Struc-
ture. Although the reported crystal structure of zP2X4.1R
was solved in the absence of ATP, it revealed a potential
location for the ligand binding site (Kawate et al., 2009;
Browne et al., 2010; Evans, 2010; Stojilkovic et al., 2010b;
Young, 2010). This putative ATP binding site, shaped like
an open jaw, is �42 Å from the extracellular limit of the
plasma membrane on the interface between adjacent sub-
units. To discuss the location and the structure of this
putative ligand binding site, we have generated a homol-
ogy model of rat P2X4R with docked ATP molecule (Fig. 5).
Homology models based on the crystal structure of
zP2X4.1R suggest the position of three ATP binding sites
embedded within the interfaces of the timer (Browne et al.,
2010; Stojilkovic et al., 2010b; Young, 2010). The bottom of
the predicted ATP binding site is formed by the upper part
of the body domain of two neighboring subunits, whereas
the head domain and the left flipper of one subunit and the
dorsal fin of the other create its walls. Molecular docking
suggested that ATP binds with its adenine ring and ribose
moiety positioned at the bottom of the ligand binding
pocket, making several van der Waals and polar contacts
with both the main chain and side-chain atoms of the body
and head domains, whereas the phosphate groups are ori-
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ented toward the surface of the receptor and surrounded
by basic residues, including Lys69, Arg295, and Lys313 (in
rat P2X4R numbering). The predicted ligand binding cleft
also includes residues Lys67, Asn293, and Phe294 in good
agreement with the site-directed mutagenesis experi-
ments (Zemkova et al., 2007). Residues Phe185, Thr186, and
Lys190 are located in close vicinity of the binding site. It is
likely that upon the ATP-induced conformational change,
these residues might be an integral part of the ligand-
binding site.

It has been speculated, based on the crystal structure
of zP2X4.1R, that ATP binding induces movement of the
head, right flipper, and dorsal fin domains, resulting in
a conformational change within and between subunits
and channel opening (Kawate et al., 2009). The bottom
of the predicted ATP binding site is in the upper part of
the rigid �-sandwich motif, where the residues Lys67,
Lys69, Asn293, Arg295, and Lys313 are located. This tran-
sthyretin-like �-sandwich motif forms the skeleton of
the extracellular body domain and seems to be very rigid
because of an extensive number of hydrogen bonds be-
tween �-strands (Blake et al., 1978; Kawate et al., 2009).
Therefore, it is reasonable to speculate that this rigid
�-structure transmits the ATP-induced conformational
change from the ligand-binding site to the base of the
extracellular domain, resulting in the repositioning of
the connected TM helices and channel opening.

The structure of zP2X4.1R does not provide a ratio-
nale for the differences in ligand sensitivity between
receptors (e.g., the 200-fold difference in ATP potency at
P2X1R and P2X7R, the selectivity of ��-meATP for
P2X1R and P2X3R, or the mechanism of action of the
receptor-specific antagonists). However, mutagenesis
studies have revealed receptor-specific effects of the re-
placement of some conserved residues. Mutations in
Lys188, Asp259, and Arg304 residues decreased the po-
tency of ATP for rP2X2R more than 300-fold (Jiang et
al., 2000b) but did not significantly affect hP2X1R func-
tion (Ennion et al., 2000, 2001). Likewise, replacement
of Lys190 and Phe230 with alanines generated practically
nonresponsive rP2X4R receptors, whereas the function
of equivalent mutants in hP2X1R was only slightly af-
fected (Ennion et al., 2000; Roberts and Evans, 2004).
Mutation of mP2X7-Arg206 resulted in increased agonist
potency, but this mutation was ineffective at hP2X1R
(Ennion et al., 2000). These differences could contribute
to the heterogeneity of the pharmacological properties of

FIG. 5. Homology model of rat P2X4R with docked ATP. A, predicted
structure of the ATP binding site. Residues suggested to be involved in
ATP binding or located in the close vicinity of putative ATP-binding site
are shown as sticks. Each subunit is shown in a different color. B, surface
representation of the ATP binding pocket with a docked molecule of ATP.
C, homology model of homotrimeric rat P2X4 viewed parallel to the
membrane. Each subunit is depicted in a different color. The ATP mole-
cule is shown as a Corey-Pauling-Koltun model. The black lines suggest
the boundaries of the outer (out) and inner (in) layers of the plasma

membrane. The homology model of rat P2X4R (sequence Arg33–Val355)
was generated using the Modeler 9v7 package (Sali and Blundell, 1993)
and the crystal structure of zP2X4.1R (Kawate et al., 2009) as a template.
Missing side chains were built using the DeepView/Swiss-PdbViewer
v4.0.1 program (Guex, 1997). Bad contacts were corrected manually and
the model was energy-minimized using the DeepView/Swiss-PdbViewer
with the GROMOS96 43B1 parameter set. The AutoDock v4.2 (Morris et
al., 2009) was used to predict the position and the conformation of ATP
within the putative ligand-binding site at the in1terface between two
neighboring subunits. The figure was generated using PyMol v0.99
(http://www.pymol.org).
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these receptor subtypes. In the absence of a P2XR crys-
tal structure with bound ATP; however, this evidence
should be considered circumstantial and does not prove
the precise localization of the ATP binding site or the
specificity of these sites for various agonist analogs.

IV. Allosteric Binding Sites and
Receptor Function

Allosteric modulators can change the affinity of recep-
tors for native agonists and/or affect agonist efficacy in
different ways. Allosteric antagonists may reduce ago-
nist affinity without affecting agonist efficacy. Such a
pattern of action resembles the effect of competitive
antagonists at orthosteric binding sites, but in a limited
way. The allosteric antagonistic effect is always satura-
ble, because the allosteric effect will reach a maximum
when all allosteric binding sites are occupied. In con-
trast, orthosteric ligands can have almost infinite com-
petitive effects as long as the concentrations of the com-
petitive ligands are changed in the correct manner.
Allosteric agents may reduce both affinity and efficacy,
producing a mixture of competitive/noncompetitive ef-
fects, or may act by reducing efficacy only, producing
noncompetitive effects. Other combinations are also pos-
sible, such as increasing the affinity of an agonist and
inhibiting its efficacy, potentiating the endogenous re-
sponse through an increase in the receptor’s affinity, or
efficacy for its agonist (Kenakin and Miller, 2010). In
this review, we talk about allosteric-induced changes in
the potency and efficacy of ATP for particular receptor
subtypes.

The majority of allosteric regulation of P2XRs occurs
at extracellular allosteric binding sites. This includes
binding sites for essential trace metals and other micro
and macro metals, as well as binding sites for protons.
Allosteric binding sites around the TM region include
sites for IVM and alcohols. Regulation of P2XR function
by calcium binding proteins, protein kinases, lipids, and
reactive oxygen species also occurs through allosteric
modulatory sites located at the N and C termini,
whereas the sites affected by carbon monoxide, steroids,
propofol, ketamine, and toluene, if they exist, have not
been identified.

A. Metals as Allosteric Modulators

Numerous metals have profound effects on P2XR
function, acting as potent allosteric modulators (Huido-
bro-Toro et al., 2008). The effects of essential trace met-
als, heavy metals, trivalent cations, and macro metals
on P2XR functions are summarized in Tables 1 to 6 and
are discussed in detail in the following sections.

1. Essential Trace Metals. Nine metals (chromium,
cobalt, copper, iron, manganese, molybdenum, nickel,
selenium, and zinc) are now included in the group of
essential trace elements. Some other metals, such as
vanadium, may also be nutritionally important, but

their essentiality has not been fully established. These
elements occur in very small amounts (usually less than
1–10 parts per million) as constituents of living organ-
isms. Their deficiency induces specific biochemical
changes causing abnormalities in function, and these
abnormalities can be corrected by supplementation with
the elements (Reilly, 2004). Among the trace metals,
zinc, copper, and iron have particular relevance (Mathie
et al., 2006; Madsen and Gitlin, 2007). Zinc and copper
are transported intracellularly and stored in synaptic
vesicles together with transmitters through variable
transporters (Kuo et al., 2001; Palmiter and Huang,
2004). After release to the synaptic cleft, these metals
can reach concentrations as high as 250 to 300 �M
(Assaf and Chung, 1984; Kardos et al., 1989). The re-
leased trace metals can bind to numerous receptors and
channels, including voltage-gated sodium, calcium, or
potassium channels, store-operated Ca2� channels,
transient receptor potential channels and ligand-gated
channels, where they act as allosteric modulators (Ma-
thie et al., 2006). Trace metals are also allosteric mod-
ulators of P2XRs.

a. P2X1, P2X3, and P2X5 receptors. The function of
rP2X1R is inhibited by zinc in a concentration-depen-
dent manner without affecting Emax values, whereas
rP2X3R function is potentiated by this metal, causing a
leftward shift in the concentration-response to ATP ap-
plication with a maximal effect at 10 �M. Higher zinc
concentrations have been shown to reduce P2X3R cur-
rent, suggesting the possible existence of two allosteric
sites at this receptor, a high-affinity site with a poten-
tiating effect and a low-affinity site with an inhibitory
role (Wildman et al., 1999b). The rP2X5R is also modu-
lated in a biphasic fashion by zinc, again suggesting the
existence of at least two allosteric sites for this metal
(Wildman et al., 2002). There is no information about
the amino acid residues involved in the binding of
trace metals at these receptors. In addition, effects of
other trace metals on the function of these receptors
have not been reported.

b. P2X2 receptor. Zinc and copper both exhibit a bi-
phasic effect on rP2X2R function: the ATP-induced re-
sponses are significantly potentiated at 10 to 100 �M
and inhibition at millimolar concentrations (Xiong et al.,
1999; Clyne et al., 2002a; He et al., 2003b; Lorca et al.,
2005). Zinc also potentiates the ATP responses of native
rP2X2Rs and rP2X2/3Rs expressed in neurons from
parasympathetic ganglia (Ma et al., 2005), as well as in
neurons from the rat hypothalamus (Vorobjev et al.,
2003) and dorsal motor nucleus (Ueno et al., 2001).
Cobalt and nickel also potentiate the activity of rP2X2R,
but the potential inhibitory effect at high concentrations
was not tested (Lorca et al., 2005). Site-directed mu-
tagenesis revealed the critical role of extracellular
His120 and His213 in the positive modulation by zinc and
copper (Clyne et al., 2002a; Lorca et al., 2005). His192,
His245, and His319 are also partially involved, probably
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contributing to the stabilization of the allosteric site
(Lorca et al., 2005). Nagaya et al. (2005), using con-
catamers, showed that the allosteric sites for zinc and
probably copper are formed by His120 and His213 of ad-
jacent subunits. These results have been recently con-
firmed with the crystallization of P2X4.1R (Kawate et
al., 2009). The flexibility of the zinc binding site of
rP2X2R was also tested by shifting two essential histi-
dines 13 residues upstream or downstream from their
original position. The ability of zinc to potentiate the
mutated channels followed the order His120 �His121 �
His119 and His212 � His213 � His211 (Tittle et al., 2007).
In contrast, it has been difficult to identify the residues
that compose the zinc/copper inhibitory site (Clyne et al.,
2002a; Friday and Hume, 2008). Tittle and Hume (2008)
also showed that, unlike rat and mouse P2X2Rs,
hP2X2R is inhibited by zinc and copper, revealing the
species-specific modes of metal modulation. This group
also found that none of the nine histidines in the extra-
cellular domain of hP2XR were required for zinc inhibi-
tion, suggesting that the replacement of His213 with
arginine in human receptors at least partially accounts
for the change in the receptor behavior. Cobalt and
nickel seem to act at the same allosteric site, as deduced
from experiments using mutant receptors (Lorca et al.,
2005).

c. P2X4 receptor. The unique characteristic of P2X4R
is its differential modulation by trace metals. Zinc and
cobalt potentiate receptor activity and copper inhibits it.
Figure 6 shows that zinc potentiation is due to an in-

crease in ATP potency at P2X4R, whereas copper affects
the Emax value without affecting the potency of the ag-
onist. At higher concentrations (30 �M–1 mM), zinc
inhibits P2X4R function via a reduction in ATP efficacy
(Wildman et al., 1999b; Acuña-Castillo et al., 2000).
Residues that are commonly present in copper binding
sites include histidines, aspartic acids, glutamic acids,
and cysteines, although other residues could also con-
tribute (Aitken, 1999). Among the three ectodomain his-
tidines, only the mutation of His140 abolished the inhib-
itory action of copper and modified the pattern of zinc
action from a bell-shaped curve, typical of biphasic mod-
ulation, to a sigmoid curve, accompanied by an increase
in the amplitude of response (Coddou et al., 2003). Sub-
sequent studies focused on the Thr123-Thr146 ectodo-
main sequence in a search for other residues that con-
tribute to the regulatory actions of copper and zinc.
These experiments revealed that Asp138 is a second com-
ponent of the P2X4R inhibitory site, whereas Cys132 is
suggested to account for the positive zinc allosteric ef-
fect. These experiments also ruled out the involvement
of Thr123, Ser124, Asp129, Asp131, Thr133, and Thr146

residues in the allosteric actions of copper and zinc (Cod-
dou et al., 2007). Cobalt also potentiates P2X4R activity,
but this action is long lasting, as indicated by the lack of
recovery during a 45-min washout period (Coddou et al.,
2005).

To visualize the location of these three residues, we
built the homology model of rat P2X4R (sequence Arg33-
Val355) using the Modeler 9v7 package (Sali and
Blundell, 1993) and the crystal structure of zP2X4.1R
(Kawate et al., 2009) as a template. Figure 7 shows that
the His140 residue is located close to the proposed ATP
binding site that includes Asn293, Arg295, and Lys313

FIG. 6. Patterns of rP2X4R allosteric modulations. A and C, zinc in-
creases and protons decrease the sensitivity of receptors for agonist
without affecting Emax. B, IVM treatment causes both a leftward shift in
the sensitivity of receptors for agonist and an increase in the Emax value.
D, copper decreases the Emax without affecting the sensitivity of receptors
for agonist.

FIG. 7. Residues of the rat P2X4R potentially involved in the modu-
latory effects of copper and zinc cations (Wildman et al., 1999; Acuña-
Castillo et al., 2000; Coddou et al., 2003, 2007). Structural model of rat
P2X4R shows the location of residues Asp138, His140, Thr133, Cys132, and
Cys159 (shown as sticks) with respect to the predicted ATP-binding site.
All these residues are present within the head domain of one subunit,
which creates one wall of the predicted ATP-binding pocket and is prob-
ably involved in the ATP-induced conformational change. The figure was
generated using PyMol v0.99 (http://www.pymol.org).
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from the same subunit and Lys67, Lys69, and Phe185

from the adjacent subunit. Thus, it is reasonable to
speculate that Asp138 and His140 from the same subunit
represent the P2X4R-specific region accounting for the
inhibitory effects of copper and high concentrations of
zinc. The finding that the replacement of Cys132 abol-
ishes the potentiating effect of zinc also raises the pos-
sibility that the SS3 bond is important for zinc potenti-
ation or that this bond is not permanent but instead
breaks and reforms.

The zinc-induced potentiation of P2X4R does not de-
pend on the preapplication time, whereas copper-inhibi-
tion is time dependent, and the inhibition persists when
the metal is washed out before the channel is opened by
ATP (Acuña-Castillo et al., 2000). This suggests that the
zinc binding site appears on the receptor in the open
state, whereas copper binds to the receptor in the closed
state. This provides a rationale for the easy prediction of
which residues participate in copper binding based on
the crystal structure of the closed receptor (Kawate et
al., 2009).

d. P2X7 receptor. Our group examined effects of cop-
per and zinc in X. laevis oocytes expressing rP2X7R
(Acuña-Castillo et al., 2007). Copper noncompetitively
inhibited the receptor-mediated current with an IC50 of
4 �M. Zinc also inhibited the ATP-gated current, but
was 20-fold less potent. Other groups have also observed
inhibition of rP2X7R currents when the receptor was
expressed in HEK293 cells (Liu et al., 2008a). Differ-
ences in metal modulation across species have also been
reported for this receptor. Unlike rP2X7R, copper, but
not zinc, inhibited the mouse receptor (Moore and Mack-
enzie, 2008). Mutagenesis of six ectodomain histidines
revealed that the H267A mutation resulted in a copper-
resistant receptor, whereas the H201A and H130A mu-
tants were less sensitive to copper than the wild-type
receptor, and the H62A, H85A, and H219A mutants
exhibited normal copper sensitivity. The zinc-induced
inhibition of receptor function was reduced in H267A
and H219A mutants (Acuña-Castillo et al., 2007). Other
groups have reported some effects of replacing His201

and His267 on the copper- and zinc-mediated inhibition
of P2X7R currents, but they also detected a dramatic
reduction or almost a complete loss of inhibition by the
two metals in cells expressing the H62A and D197A
double mutant (Liu et al., 2008a). Further studies
should clarify whether the differences are due to the
expression system (oocytes versus HEK293 cells), the
agonist used (ATP versus BzATP), or some other factors.

e. Other P2X receptors. Native P2XRs expressed in
bullfrog DRG neurons are also inhibited by zinc (Li et
al., 1997). Five P2X-like genes are expressed in D. dis-
coideum, and ATP-activated channels are expressed in
the plasma membrane. The responses of these channels
are inhibited by copper and zinc with IC50 values of 0.9
and 6.3 �M, respectively (Ludlow et al., 2008). A P2XR
cloned from the parasitic platyhelminth Schistosoma

mansoni is permeable to fluorescent dyes and is inhib-
ited by extracellular zinc with an IC50 of 0.4 �M (Raouf
et al., 2005). Zinc and copper also inhibited the ATP-
induced current in cells expressing a P2XR cloned from
the tardigrade Hypsibius dujardini with IC50 values of
63 and 20 �M, respectively. In contrast to vertebrate
P2XRs, none of the ectodomain histidines plays a major
role in coordinating metal binding at this receptor (Ba-
van et al., 2009).

f. Summary. A common aspect of P2XRs is their
regulation by essential trace metals. The nature of trace
metal actions (positive or negative) depends on the sub-
type of receptor and species differences. This indicates
that relatively small changes in the structure of recep-
tors are sufficient to change the direction of modulatory
action of trace metals. Furthermore, in contrast to the
ATP binding sites, the amino acids involved in P2XR
trace metal coordination do not seem to be aligned
among P2X subunits. This may provide additional ratio-
nale for the opposing effects of allosteric regulators, such
as zinc and copper, on receptor function. Two distinct
and separate binding sites seem to exist for trace metals,
and it seems that both sites can be occupied by different
elements with variable affinities. In P2X4R, these sites
provide opposite receptor modulation, positive for zinc
and negative for copper. The three-dimensional struc-
ture of the P2XRs indicates that coordination sites of
trace metals at the P2X4R are spatially close to the ATP
binding site, allowing us to propose that these metals
modify the ligand binding. For P2X2R, the ATP binding
site and the zinc allosteric sites are not only close by but
are also are formed at the interface between neighboring
subunits.

2. Heavy Metals. The term heavy metal refers to any
metallic element that has a relatively high density and
is toxic or poisonous at low concentrations. Examples of
heavy metals include cadmium, lead, mercury, and thal-
lium, as well as lighter metals, such as arsenic and
chromium. These metals affect the function of numerous
voltage- and ligand-gated channels and ionic pumps
(Kiss and Osipenko, 1994). Mercury acts as a positive
modulator of P2X2R. It causes a leftward shift in the
potency of ATP and does not change the Emax value
(Lorca et al., 2005). In contrast, mercury acts as a neg-
ative modulator of P2X4R (Coddou et al., 2005). In both
cases, the actions of mercury resemble the actions of
copper, suggesting that these metals may bind to the
same allosteric site. However, this hypothesis was dis-
carded when in was reported that the copper-resistant
mutants were still modulated by mercury (Coddou et al.,
2005; Lorca et al., 2005). Using chimeric P2X2/X4Rs, we
recently found that the primary site of action for mer-
cury is an intracellular cysteine at position 430 (Coddou
et al., 2009). The residual action of mercury could be
mediated by still unidentified ectodomain binding sites.
Cadmium potentiates P2X2R and P2X4R (Coddou et al.,
2005; Lorca et al., 2005) but inhibits P2X1R, P2X3R, and
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P2X7R (Nakazawa and Ohno, 1997; Virginio et al.,
1997). This metal seems to bind to the allosteric sites
identified for zinc in the P2X2R and P2X4R. This was
inferred from competition studies using zinc and cad-
mium and from experiments with zinc-resistant mu-
tants (Coddou et al., 2005; Lorca et al., 2005). Other
metals, including lead, barium, palladium, silver, plati-
num, and gallium, had no effect on the ATP-evoked
currents in P2X2R- and P2X4R-expressing cells, indicat-
ing that the allosteric sites have strict structural re-
quirements (Coddou et al., 2005; Lorca et al., 2005).

3. Lanthanides. These rare earth elements are com-
monly known for their ability to inhibit ion permeation
by blocking the pore of various ion channels and causing
toxicity (Kiss and Osipenko, 1994). These trivalent cat-
ions also inhibit P2XRs. Lanthanum, cerium, neodym-
ium, and gadolinium inhibit P2X1R and P2X2R ex-
pressed in PC12 cells and X. laevis oocytes at 3 to 300
�M. This inhibition is due, at least in part, to allosteric
mechanisms (Nakazawa et al., 1997). Gadolinium also
inhibits D. discoideum P2XRs (Ludlow et al., 2008). The
existence of allosteric binding sites for gadolinium was
recently confirmed with the crystallization of zP2X4.1R.
Using a gadolinium derivative, three sites located in the
periphery of each subunit were identified, each site com-
posed of Asp184 and Asn187 residues. The fourth site is
formed by the Glu98 residues of each channel subunit
(Kawate et al., 2009). At zP2X4.1R, Asn187 is adjacent to
Phe188 and Thr189, two residues that were predicted to
participate in the formation of the ATP binding pocket,
suggesting that gadolinium binding reduces ATP affin-
ity. At rP2X4R, an Asn residue is also present, but the
effects of gadolinium on the function of this receptor
have not been tested. The use of 1 mM gadolinium dur-
ing receptor crystallization may explain the lack of a
solved structure for an ATP-bound form. Other groups
have shown that gadolinium increases recovery from
desensitization in P2X3Rs (Cook et al., 1998).

4. Macro Metals. Calcium, potassium, sodium, and
magnesium belong to macro elements, which are present
in human tissues in 14, 2, 1.4, and 0.27 g/kg body weight,
respectively (Reilly, 2004). There is no information
about the potential role of potassium in the regulation of
P2XR function, and very limited information exists sup-
porting a role for sodium in P2XR gating. Early evidence
for the role of sodium comes from experiments in human
lymphocytes showing that the ATP-evoked calcium in-
flux is strongly inhibited by this cation (Wiley et al.,
1992). A possible role of extracellular sodium in the
regulation of P2X7R permeability to large molecules has
been proposed by two groups (Jiang et al., 2005a; Li et
al., 2005). In another study, it was demonstrated that
sodium could regulate the motility of airway cilia by
inhibiting native P2XRs, presumably P2X4R and/or
P2X7R by binding to an extracellular allosteric site (Ma
et al., 1999, 2006).

On the other hand, there is a large body of information
concerning the effects of divalent calcium and magne-
sium ions on channel function. Calcium and magnesium
inhibit recombinant P2XRs at millimolar concentrations
(North, 2002). Native receptors are also sensitive to
modulation by calcium (Nakazawa and Hess, 1993; Cook
and McCleskey, 1997) and magnesium (Tomić et al.,
1996; Miyoshi et al., 2010). It is well known that these
cations make complexes with ATP, reducing the free
acid form of ATP (or ATP4	) in solution. It has also been
suggested that ATP4	 acts as an agonist for histamine
secretion by mast cells (Dahlquist and Diamant, 1974).
This conclusion was further supported by experiments
on the concentration dependence of ATP-induced hista-
mine secretion in cells bathed in different calcium and
magnesium concentrations (Cockcroft and Gomperts,
1979). More recently, the effect of ATP on P2X7R cur-
rents was studied in the presence and absence of cal-
cium, and the same conclusion was reached (Klapper-
stück et al., 2001). Although it has never been supported
by direct evidence, this hypothesis has prevailed in the
literature during the last decade. However, numerous
data strongly support alternative hypotheses.

Surprenant et al. (1996) reported that extracellular
calcium inhibits both the cationic current and dye up-
take. The inhibitory effect of this cation on rP2X7R
function was mimicked by other divalent cations in the
following order: Cu2� � Cd2� �Zn2� � Ni2� ��Mg2� �
Co2� � Mn2� � Ca2� � Ba2� �� Sr2�. For each of these
metals, the IC50 values for current and dye uptake were
similar. This inhibition was voltage-independent, a find-
ing inconsistent with the hypothesis that divalent cat-
ions cause functional inhibition by blocking the channel
pore. The same group also observed that the major in-
hibitory effect of divalent cations was observed in rela-
tively low concentrations (1–3 mM), a pattern typical for
allosteric modulation (Virginio et al., 1997). The rP2X7R-
H130A mutant has been shown to be resistant to magne-
sium inhibition, reinforcing the hypothesis that this metal
acts through an allosteric mechanism (Acuña-Castillo et
al., 2007).

The inhibitory effects of calcium and magnesium were
also observed in recombinant rP2X2Rs with single-chan-
nel recording. These effects manifest as a fast block,
visible as a reduction in amplitude of the unitary cur-
rents (Ding and Sachs, 1999). In further work on this
topic, this group showed that bath calcium concentra-
tions also increase the rates of receptor desensitization,
a finding inconsistent with ATP4	 acting as an agonist.
Furthermore, they showed a similar phenomenon with
magnesium, barium, and manganese, but the calcium-
induced desensitization exhibited a higher affinity and
cooperativity, also not consistent with divalent cations
determining ATP4	 concentration as the sole mecha-
nism of calcium modulation. The authors have not clar-
ified whether this effect is due to a direct allosteric
interaction of calcium with the receptor or occurs
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through the activation of an accessory calcium-depen-
dent protein (Ding and Sachs, 2000).

Other groups have also observed a strong inhibitory
effect of bath calcium on rP2X2Rs with a half-maximal
block of the current at about 5 mM, but not on hP2X1Rs
(Evans et al., 1996). rP2X3R was more than 10-fold less
sensitive to blockade by bath calcium (IC50, 89 mM),
whereas heteromeric rP2X2/3Rs were more sensitive
(IC50 15 mM). Thus, the rank of order for inhibition by
calcium at these receptors is P2X2R � P2X2/3R �
P2X3R � P2X1R (Virginio et al., 1998a). A stimulatory
role of calcium in P2X3R recovery from desensitization
has also been proposed (Cook et al., 1998). A distinct role
of calcium and magnesium in the modulation of native
P2X3Rs from cultured rat DRG neurons was also re-
ported. Calcium positively modulated these channels,
whereas magnesium had an inhibitory effect (Giniatul-
lin et al., 2003). Single-channel recordings of P2X4R
further revealed that magnesium reversibly decreases
the amplitude of ATP-evoked single channel currents in
a concentration-dependent manner that is independent
of the membrane potential. In addition, they found that
this cation shortens the mean open time without affect-
ing the mean closed time. The authors concluded that
magnesium inhibits the function of human P2X4R by
means of an open-channel block via a binding site lo-
cated at the exterior surface of the pore (Negulyaev and
Markwardt, 2000).

Calcium may also regulate P2XR function by acting as
an intracellular messenger. All P2XRs conduct calcium
through their pores, but these channels also produce cell
depolarization and promote calcium influx indirectly by
activating voltage-gated calcium channels. Elevated in-
tracellular calcium concentrations can trigger many cel-
lular functions, including the activation and inhibition
of adenylyl and guanylyl cyclases, leading to up- and
down-regulation of protein kinase A and G, as well as
the activation of some protein kinase C isoforms. Cal-
cium also binds to numerous signaling proteins, such as
CaM, which can alter cellular functions either directly or
through CaM-dependent kinases. A recent report de-
scribes the role of intracellular calcium through CaM on
P2X7R function. In cells expressing this receptor, CaM
contributes to current facilitation and membrane bleb-
bing. The proposed CaM-binding site corresponds to the
Ile541-Ser552 sequence located in the C-terminal tail of
P2X7R (Roger et al., 2008). Single-nucleotide polymor-
phisms of hP2X7R, specifically Q521H, also affect recep-
tor sensitivity to extracellular calcium inhibition (Roger
et al., 2010). Calcium-CaM-dependent protein kinase II
potentiates the ATP response in primary sensory DRG
neurons, not in an allosteric manner but by promoting
trafficking of P2XRs (Xu and Huang, 2004). A recent
report also described a novel interaction of the P2X2R
with the neuronal calcium sensor VILIP1. The authors
found that VILIP1 constitutively binds to P2X2Rs, al-
tering channel properties such as ATP-sensitivity and

peak currents. This opens the field to study if such
interactions occur in other P2XRs (Chaumont et al.,
2008).

B. Protons as Allosteric Modulators

Extracellular and intracellular pH, determined by
proton concentration, affects the gating properties of
both voltage- and ligand-gated ion channels, including
acid-sensing ion channels and the transient receptor
potential vanilloid receptor channels (Caterina et al.,
1997; Tominaga et al., 1998; Wemmie et al., 2006). With
the cloning of P2XRs, it became obvious that these re-
ceptors can also sense hydrogen ions in the bath medium
and respond by modulating the ATP-induced currents in
a receptor-specific manner.

For rP2X2R, the potency of all agonists, but not an-
tagonists, is enhanced 5- to 10-fold by acidification with-
out affecting the maximal agonist response (King et al.,
1996, 1997; Stoop et al., 1997; Clyne et al., 2002a). The
receptor-specific sensitivity to pH is also obvious in sin-
gle-cell calcium measurements (He et al., 2003b). This
effect was also seen in cells expressing heteromeric
rP2X2/3Rs (Stoop et al., 1997), whereas rP2X1/2Rs ex-
hibit unique pH properties (Brown et al., 2002). The
agonist-induced response of P2X2/3R is also extremely
sensitive to small changes in extracellular pH (approxi-
mately 7.1–7.2) (Li et al., 1996a,b). The pH range was
narrowed for the proton enhancement of the ATP re-
sponse at the heteromeric rP2X2/6Rs (King et al., 2000).
The basic His319 residue was identified as a putative pH
sensor for rP2X2R (Clyne et al., 2002a). This residue is
in a receptor region that has been suggested to operate
as a linker region between the ligand binding domain
and the channel pore in other P2XR subunits (Yan et al.,
2006; Roberts and Evans, 2007).

All other homomeric P2XRs are inhibited by acidifica-
tion. The ATP potency for rP2X1R was reduced 2-fold at
pH 6.5 and 6-fold at pH 5.5 without altering the maxi-
mum current amplitude (Stoop et al., 1997; Wildman et
al., 1999b). Effects of extracellular protons and zinc are
additive for rP2X1R (Wildman et al., 1999b). Acidifica-
tion also reduces the peak amplitude of the rP2X3R
current at an EC50 concentration of agonists (Stoop et
al., 1997), and it right-shifts the ATP concentration-
response curve without altering Emax (Wildman et al.,
1999). Another study performed with hP2X3R revealed
a dual effect of acidification. This group found an inhib-
itory effect that shifts the concentration-response curves
to the right and a stimulatory effect that increases the
current peak amplitude and activation time constant
and accelerates in the recovery from desensitization.
The authors also identified the His206 residue as the
responsible for these effects (Gerevich et al., 2007). It is
interesting that only fully N-glycosylated hP2X3Rs rec-
ognize external protons (Wirkner et al., 2008). Acidifica-
tion also decreased the potency of ATP for rP2X4R with-
out a change in the maximum response (Stoop et al.,
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1997; He et al., 2003b), as summarized in Fig. 6. Alkal-
ization, on the other hand, enhanced the current ampli-
tude (Clarke et al., 2000). Mutation of His286 removes
the extracellular pH sensitivity of this receptor subtype
(Clarke et al., 2000; Yan et al., 2005). This residue is
located far from the putative ATP binding site, suggest-
ing that protons affect gating rather than ATP binding.

Acidification also inhibits the function of P2X5R and
P2X7R, but with a pattern of inhibition that differs from
other members of this family. In rP2X5R, acidification
reduced both the potency and efficacy of ATP (Wildman
et al., 2002), whereas in rat and human P2X7R, it causes
a reduction in the peak amplitude of current without
altering the agonist sensitivity (Liu et al., 2009). The
inhibitory effect of protons on hP2X7R was also observed
in single-channel recordings (Flittiger et al., 2010).
Changes in the EC50 value of agonists caused by acidi-
fication of P2X7R could be masked by the complex gating
properties of these receptors, including the generation of
biphasic currents (Klapperstück et al., 2001; Yan et al.,
2008) and the facilitation of responses during repetitive
agonist application (Roger et al., 2008). Several residues
seem able to contribute to the pH sensitivity of P2X7R,
His130 and Asp197 playing major roles (Acuña-Castillo et
al., 2007; Liu et al., 2009).

Native P2XRs are also sensitive to changes in pH.
Acidic pH potentiates the ATP-gated currents in guinea
pig cochlear outer hair cells (Kanjhan et al., 2003), mice
DRG neurons (Light et al., 2008), and in neurons from
different parasympathetic ganglia (Ma et al., 2005). The
pH sensitivity of P2XRs seems to be conserved in evolu-
tion, in that D. discoideum P2XRs are also modified by
acidification (Ludlow et al., 2008). These results are
consistent with the hypothesis that acidic conditions in
the synaptic cleft could modify purinergic transmission,
which could be physiologically relevant in certain
events, such as pain sensation during inflammation.

C. Ivermectin as the P2X4 Receptor-Specific Modulator

IVM, a semisynthetic derivative of the natural fer-
mentation products of Streptomyces avermitilis, is a
member of a class of lipophilic compounds known as
avermectins. It is a relatively large molecule, spanning a
distance of approximately 20 Å, as documented by nu-
clear magnetic resonance and X-ray crystallographic
analysis (Springer et al., 1981; Hu et al., 1998). IVM is
widely used in human and veterinary medicine as an
antiparasitic drug, predominantly to treat river blind-
ness caused by Onchocerca volvulus (Burkhart, 2000).
The therapeutic effects of IVM are mediated by the
action of this compound as an agonist and allosteric
modulator of glutamate-gated chloride channels ex-
pressed in the nerves and muscles of the parasite, lead-
ing to muscle paralysis and starvation (Cully et al.,
1994; Dent et al., 1997; Ikeda, 2003). IVM was also
found to modulate other extracellular ligand-gated
channels, including nicotinic and GABA receptors (Sigel

and Baur, 1987; Krůsek and Zemková, 1994; Krause et
al., 1998; Shan et al., 2001).

IVM also acts as a reversible allosteric modulator at
mammalian homomeric and heteromeric P2X4Rs, but
not at homomeric P2X2Rs, P2X3Rs, or P2X7Rs (Khakh
et al., 1999b). Extracellularly applied IVM has multiple
effects on the ATP-induced current. It increases both the
current amplitude in response to supramaximal agonist
concentration and the sensitivity of receptors to agonists
(Fig. 6), reduces the desensitization rate, and greatly
prolongs the deactivation of current after ATP removal
(Khakh et al., 1999b; Priel and Silberberg, 2004; Jelínk-
ová et al., 2006). Single-channel analysis showed that
IVM increases the channel conductance for approxi-
mately 20% and the probability of channel opening and
prolongs the mean channel open time (Priel and Silber-
berg, 2004). In addition to human and rat P2X4R, S.
mansoni P2XR is also potentiated by IVM (Agboh et al.,
2004). More recently, a P2XR from the tardigrade spe-
cies H. dujardini was cloned, and the gating properties
of this receptor were also affected by IVM treatment
(Bavan et al., 2009). Unlike rP2X4R, IVM does not affect
the kinetics of desensitization for S. mansoni and H.
dujardini P2XR currents. IVM alone does not open any
of these channels. It has also been suggested that poten-
tiation of P2X4R by IVM reflects an increase in the
number of cell surface receptors, resulting from a mech-
anism dependent on the endocytosis of this receptor
(Toulmé et al., 2006), but further work is needed to
clarify this hypothesis.

Initial experiments also indicated that IVM is effec-
tive when applied extracellularly but not intracellularly,
suggesting that the ectodomain contains the binding site
for this compound (Priel and Silberberg, 2004). Experi-
ments with chimeric receptors revealed that the TM
domains and nearby residues of P2X4R are important
for the effects of IVM on channel deactivation (Jelínková
et al., 2006). This conclusion was confirmed by Silber-
berg et al. (2007) using TM domain chimeras between
P2X4R and P2X2R. Their data also showed that there is
widespread rearrangement of the TMs during the open-
ing of P2X4 receptors. These conclusions were based on
experiments with chimeric channels and tryptophan-
scanning mutagenesis. To evaluate IVM effects in such
mutants and to identify residues that alter the effects of
IVM application, the authors used the EC50 concentra-
tions of ATP, a saturating concentration of IVM, and
between 2-fold and 5-fold increases in the amplitude of
current in the presence of IVM. Their study revealed
weakened effects of IVM at V28A, I39W, V43W, and
V47W TM1 mutants as well as at G340W, G342W,
L345W, and V348W TM2 mutants and enhanced effects
of IVM at G29W, V35W, L37W, L40W, A41W, S341A,
G347W, A349V, V351W, and C353A mutants. Helical
net diagrams of the TM domains showed a random dis-
tribution of these residues, and none of these residues
were P2X4R-specific (Silberberg et al., 2007).
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In our hands, the IVM-sensitive residues were Gln36,
Leu40, Val43, Val47, Trp50, Asn338, Gly342, Leu346, Ala349,
and Ile356. Replacing these residues with cysteine and
alanine attenuated the allosteric action of IVM, but none
of these mutations alone accounted for all the effects of
this compound on the receptor function (Jelínkova et al.,
2008; Jindrichova et al., 2009). The pattern of these
predominantly nonpolar residues, which are also pres-
ent in the IVM-sensitive S. mansoni P2X subunit, was
consistent with the helical topology of both TM domains.
Every third or fourth amino acid was affected by substi-
tution (Fig. 8). It is unlikely that these residues directly
contribute to IVM binding, but they could reflect a
change in the IVM binding pocket. The most probable
location of the IVM allosteric site is at the interface of
the TM1 and TM2 domains, and its mechanism of action
could involve the rotation of TM1 relative to TM2, lead-
ing to an increased potency of ATP (Silberberg et al.,
2007).

The specificity of the allosteric actions of IVM was
used to identify native P2X4Rs in rat pituitary lac-
totrophs (Zemkova et al., 2010), hepatocytes (Emmett et
al., 2008), sensory neurons (De Roo et al., 2003), alveolar
macrophages (Bowler et al., 2003), human lung mast
cells (Wareham et al., 2009), porcine tracheal smooth
muscle cells (Nagaoka et al., 2009), and rabbit airway
ciliated cells (Ma et al., 2006). IVM-sensitive currents
were also detected in numerous mouse cell types, includ-

ing macrophages (Sim et al., 2007), cortical neurons
(Lalo et al., 2007), glial cells (Raouf et al., 2007), ven-
tricular myocytes (Shen et al., 2006), submandibular
gland ductal cells (Pochet et al., 2007), and Leydig cells
(Antonio et al., 2009). IVM was also used to study the
functional interactions of P2X4R with other members of
this family of channels (Alqallaf et al., 2009; Casas-
Pruneda et al., 2009). We have also frequently used the
allosteric control of rP2X4R in structural-functional
characterization of these receptors (Zemkova et al.,
2007; Jelínkova et al., 2008; Rokic et al., 2010).

D. Alcohols Influence P2X Receptor Gating

Alcohols can modulate the function of several voltage-
gated and ligand-gated ionic channels, most likely
through interactions with the TM domains or hydropho-
bic regions within the channel structure (Crews et al.,
1996). Alcohols also affect the gating properties of both
recombinant and native P2XRs. Experiments with re-
combinant rP2X4R expressed in X. laevis oocytes re-
vealed a dose-dependent inhibitory effect of ethanol on
receptor function, causing a 2-fold rightward shift in the
sensitivity of this receptor to ATP without altering the
Emax. This effect is not dependent on membrane poten-
tial, and ethanol does not change the reversal potential
of ATP-activated currents (Xiong et al., 2000). Ethanol
also inhibits rP2X2R function but does so less effectively
than rP2X4R (Davies et al., 2002). In the case of
rP2X3R, ethanol potentiates the ATP-gated currents in
a concentration-dependent manner and increases the
maximal response to zinc, indicating that ethanol and
zinc act at different sites (Davies et al., 2005a). In con-
trast, the function of hP2X3R was unaffected by 100 mM
ethanol (Köles et al., 2000).

In the native P2XRs of amphibian DRG neurons, eth-
anol also inhibits P2XR function by shifting the agonist
concentration-response curve to the right in a parallel
manner, increasing the EC50 without affecting Emax. To
distinguish whether this inhibition involves competitive
antagonism or a decrease in the affinity of the agonist
binding site, the authors also studied the kinetics of
activation and deactivation of the P2XR current. These
studies revealed that ethanol decreases the time-con-
stant of P2XR deactivation without affecting the time-
constant of activation, indicating that ethanol acts as an
allosteric regulator, causing a decrease in the affinity of
receptors for ATP. They also compared the potency of
different alcohols for inhibiting ATP-activated current.
The following rank order was reported: 1-propanol �
trifluoroethanol � monochloroethanol � ethanol �
methanol (Li et al., 1993, 1998; Weight et al., 1999). The
effect of ethanol was not specific for this type of neuron
but has also been observed in freshly isolated rat hip-
pocampal CA1 neurons (Li et al., 2000) and ventral
tegmental dopaminergic neurons (Xiao et al., 2008). The
relevance of these findings to the pharmacology of eth-
anol and alcoholism remains elusive.

FIG. 8. Cartoon representation of the TM domains of rat P2X4 viewed
parallel to the plasma membrane plane. Residues sensitive to the pres-
ence of IVM are shown in yellow. Replacement of these residues with
cysteine and alanine attenuated the allosteric action of IVM, but none of
these mutations alone accounted for all of the effects of this compound on
the receptor function (Jelínková et al, 2008; Jindrichova et al., 2009). For
better clarity, the IVM-sensitive residues of only one subunit are shown
as sticks. It is clear that the pattern of these predominantly nonpolar
residues is consistent with the helical topology of both TM domains. The
process of channel opening probably involves the tilting and/or rotation of
TM helices (Doyle, 2004). Therefore, the mechanism of IVM action could
involve facilitating the reorientation of the TM segments during the chan-
nel opening. The figure was generated using PyMol v0.99 (http://
www.pymol.org).
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Several studies have focused on the identification of
the binding site responsible for the allosteric actions of
ethanol. The intracellular application of ethanol does
not enhance the inhibition of current induced by extra-
cellular ethanol, suggesting that the alcohol inhibition of
ATP-gated ion channel function involves the extracellu-
lar domain of the receptor (Weight et al., 1999). Con-
served extracellular cysteines in the P2X4R differen-
tially regulate the inhibitory effect of ethanol in this
receptor (Yi et al., 2009). The effects of mutating the
conserved cysteine residues on ethanol modulation are
probably indirect because of changes in the structure of
the receptor, which in turn affects agonist binding and
the molecular changes associated gating. In another
study, His241 was identified as a residue responsible for
the ethanol sensitivity of P2X4Rs (Xiong et al., 2005).
Experiments with chimeric P2X2R and P2X3R revealed
that ectodomain segments at the TM interfaces play key
roles in determining the qualitative and quantitative
responses to ethanol (Asatryan et al., 2008). Further
experiments by the same group identified Asp331 and
Met336 as critical TM residues for the ethanol sensitivity
of P2X4R (Popova et al., 2010). It has recently been
suggested that IVM could antagonize the ethanol-depen-
dent inhibition of P2X4R current and that mutation of
the Met336 residue affects both IVM and ethanol effects.
A homology model built from the crystallized zP2X4.1R
revealed that a pocket formed by Asp331, Met336, Trp46,
and Trp50 could play a role in the allosteric action of
ethanol and IVM (Asatryan et al., 2010).

E. Roles of Protein Kinases in Regulation of P2X
Receptor Function

Protein kinase A (PKA) has been suggested to play a
role in the prostaglandin E2-induced potentiation of
P2X3R currents in DRG neurons (Wang et al., 2007). A
role for PKA in the glucocorticoid-induced inhibition of
P2XR current in the HT4 neuroblastoma cells of mice
has also been proposed (Han et al., 2005). Both 8-bromo-
cAMP and the PKA catalytic subunit cause a reduction
in the amplitude of rP2X2R current, presumably
through the phosphorylation of the C-terminal residue
Ser431 (Chow and Wang, 1998). More recently, the po-
tentiation of P2X4R function by this kinase was also
reported and involves the phosphorylation of an acces-
sory protein that interacts with the YXXGL endocytosis
motif located in the C-terminal, resulting in an augmen-
tation of P2X4Rs in the plasma membrane (Brown and
Yule, 2010).

The ATP-induced P2X1R and P2X3R currents (Pauk-
ert et al., 2001; Vial et al., 2004; Brown and Yule, 2007),
but not P2X4R and P2X7R currents (Brown and Yule,
2007), are potentiated by the phorbol ester phorbol 12-
myristate 13-acetate, an activator of protein kinase C
(PKC). Potentiation of P2X1R currents by 5-hydroxy-
tryptamine 2A receptors is mediated by diacylglycerol-
and calcium-dependent kinases (Ase et al., 2005). Other

groups have suggested that P2X7R function is potenti-
ated by PKC� in the type-2 astrocyte cell line RBA-2
(Hung et al., 2005). The inhibitory effects of phorbol
esters on agonist-induced P2XR currents have been ob-
served in isolated DRG neurons from adult rats (Bie et
al., 2009). A critical role of the cAMP sensor Epac in the
sensitization of native P2X3R was also reported (Wang
et al., 2007).

P2XRs share a putative PKC binding motif (TXR/K) at
the receptor N-terminal that has been proposed as a site
for modulation by phosphorylation. At first, mutation of
the N-terminal Thr18 residue of rP2X2R was found to
dramatically affect receptor desensitization, and the ad-
dition of the PKC activator phorbol 12-myristate 13-
acetate recovers the desensitization profile in chimeric
receptors (Boué-Grabot et al., 2000). Mutation of the
respective threonine residues resulted in a receptor with
either significantly smaller amplitudes or an absence of
P2X1R- and P2X3R-gated currents (Liu et al., 2003;
Franklin et al., 2007). However, there is no biochemical
evidence of direct phosphorylation of P2X2R and at this
residue (Franklin et al., 2007; Vial et al., 2004 Brown
and Yule, 2007). The function of P2X7R is also affected
by replacing Thr15 with other residues in a PKC-inde-
pendent manner (Yan et al., 2008). These observations
do not exclude the potential phosphorylation of other
residues by PKC. In hP2X3R, the substitution of Ser/Thr
residues situated within the PKC consensus phosphor-
ylation sites with Ala either abolished (T134A, S178A)
or did not alter (T196A, S269A) the UTP-induced poten-
tiation of current (Wirkner et al., 2005; Stanchev et al.,
2006).

It has also been suggested that the P2X3R current is
down-regulated by the C-terminal SRC kinase and cy-
clin-dependent kinase-5-dependent receptor phosphory-
lation. For the C-terminal SRC kinase-dependent regu-
lation, the C-terminal Tyr393 residue has been proposed
as a target for phosphorylation (D’Arco et al., 2009; Nair
et al., 2010). In mouse trigeminal sensory neurons, the
role of this kinase is controlled by nerve growth factors
(D’Arco et al., 2007).

F. Regulation of P2X Receptors by Lipids

Although phosphoinositides constitute only a small
fraction of cellular phospholipids, their importance in
the regulation of cellular functions is enormous. Among
others, phosphatidylinositol-4,5-bisphosphate (PIP2) and
phosphatidylinositol-3,4,5-trisphosphate control the func-
tion of numerous membrane transport proteins, including
Kv and Cav channels, ion channels that mediate sensory
and nociceptive responses, epithelial transport proteins,
and ionic exchangers (Gamper and Shapiro, 2007). Phos-
phoinositides also play a role in the regulation of P2XRs.
At first, it was shown that PI3K inhibitors accelerate the
P2X2R desensitization and that two positively charged
residues, Lys365 and Lys369, located in the C-domain, are
critical for the interaction of membrane phosphoinositides
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with the P2X2R (Fujiwara and Kubo, 2006). Immediately
thereafter, it was demonstrated that PIP2 directly inter-
acts with Lys364 of the P2X1R and that the inhibition of
this interaction, by either the mutagenesis of Lys364 or
reducing the abundance of membrane phosphoinositides
by PI3K/PI4K blockade, resulted in a decrease of current
amplitude and the recovery from desensitization (Bernier
et al., 2008b). In heteromeric P2X1/5Rs, PIP2 modulates
the receptor function through the P2X1 lipid-binding do-
main (Ase et al., 2010). The same group also showed sim-
ilar effects of PIP2 and PIP3 on P2X4R activity. Using
an in vitro binding assay, they found that phospho-
inositides interact with the Cys360-Val375 sequence located
in the C terminus of the receptor (Bernier et al., 2008a).
Likewise, P2X3R and P2X7R are inhibited by decreases in
PIP2 induced either by PI4K inhibition or phospholipase C
activation by coexpressed G protein coupled receptors
(Zhao et al., 2007a,b). Native and recombinant P2X2/3Rs
are also regulated by phosphoinositides (Mo et al., 2009).

A lipopolysaccharide (LPS) is a large molecule consist-
ing of a lipid and a polysaccharide joined by a covalent
bond. LPSs are found in the outer membrane of Gram-
negative bacteria act as endotoxins and elicit strong
immune responses in animals. P2X7R has been shown to
modulate the LPS-induced macrophage production of
numerous inflammatory mediators. The P2X7 C-termi-
nal domain contains several apparent protein-protein
and protein-lipid interaction motifs that are potentially
important for macrophage signaling and LPS action,
including a conserved LPS-binding domain. Peptides de-
rived from this P2X7 sequence bind LPS in vitro and
neutralize the ability of LPS to activate the extracellular
signal-regulated kinases and to promote the degrada-
tion of inhibitor of nuclear factor �B, � isoform, in vivo.
Taken together, these data suggest that P2X7R, through
its C terminus, may directly coordinate several signal
transduction events related to macrophage function and
LPS action (Denlinger et al., 2001). Other groups have
reported effects of LPS on native P2X4Rs in microglia
(Raouf et al., 2007).

Lysophosphatidylcholine (LPC), an inflammatory phos-
pholipid that promotes microglial activation, may also con-
tribute to P2X7R signaling. LPC was found to facilitate
agonist-induced Ca2� signaling in P2X7R-expressing mi-
croglial cell lines and to enhance the P2X7R-associated
formation of membrane pores and the activation of the
p44/42 mitogen-activated protein kinase. These results
suggest that LPC may regulate microglial functions in the
brain by enhancing the sensitivity of P2X7R (Takenouchi
et al., 2007). Serum constituents can also affect P2X7R
function (Michel et al., 2001). Polymyxin B, specifically its
hydrophobic tail, positively modulates P2X7R-mediated
ethidium uptake (Ferrari et al., 2006). In further support
of the role of lipids in P2X7R activity, it has been shown
that a diverse range of lipids increase agonist potency at
the P2X7R in functional and binding studies (Michel and
Fonfria, 2007).

Cholesterol-rich lipid rafts (Pike, 2003, 2004) may also
play a role in P2XR function. It has been suggested that
P2X3R localizes into lipid rafts in primary cultures of
cerebellar granule neurons as well as in brain and DRG
extracts (Vacca et al., 2004) and that the receptor un-
dergoes rapid constitutive and cholesterol-dependent
endocytosis (Vacca et al., 2009). Some reports have sug-
gested that P2X3R does not require cholesterol for its
function (Liu et al., 2006). P2X7R is also localized in
lipid rafts (Gonnord et al., 2009), interacts with caveo-
lin-1 (Barth et al., 2007), and controls the cellular levels
of several lipid messengers through the modulation of
phospholipases A2, C, and D (Garcia-Marcos et al.,
2006). P2X1R is also expressed in lipid rafts (Vial and
Evans, 2005; Vial et al., 2006). Cholesterol-depleting
agents reduce P2X1R current by approximately 90%,
but do not change P2X2R, P2X3R, and P2X4R currents.
The N-terminal 20 to 23 and 27 to 19 residues seem to
play a role in the cholesterol-dependent gating of this
receptor (Allsopp et al., 2010).

G. Multiple Roles of Steroid Hormones on P2X
Receptor Function

In addition to their genomic effects, which require a
longer exposure time, steroids can also exhibit rapid
effects, either by activating cell membrane G protein-
coupled steroid receptors or by their allosteric actions on
signaling molecules. The effect of neurosteroids on the
GABAA receptor channel is well established (Harrison
and Simmonds, 1984). There are also reports of alloste-
ric actions of neurosteroids on nicotinic �4�2, N-methyl-
D-aspartate, and glycine receptors (Paradiso et al., 2001;
Ahrens et al., 2008; Johansson et al., 2008). Sex and
adrenal steroid hormones influence P2XR expression by
activating cytosolic receptors, leading to changes in
transcriptional regulation (Holbird et al., 2001; Wang et
al., 2008; Fan et al., 2009; Urabe et al., 2009). As dis-
cussed in detail below, steroids also exhibit rapid, non-
genomic effects on P2XR function. In the absence of
information about the binding site(s) for steroids, how-
ever, we cannot rule out the possibility that neuroactive
steroids might interact with a cell membrane G protein-
coupled steroid receptor that directly or indirectly mod-
ifies the ATP-gated currents.

The first report concerning the nongenomic effects of
17�-estradiol on the activity of native P2XRs expressed
in rabbit detrusor was reported in 1999 (Ratz et al.,
1999). 17�-estradiol also inhibits P2X2Rs expressed in
PC12 cells in a nongenomic manner (Kim et al., 2000).
Dehydroepiandrosterone sulfate and estrone also inhibit
P2XRs expressed in PC12 cells (Liu et al., 2001b). A fast
potentiating effect of dehydroepiandrosterone on native
P2XRs expressed in rat sensory neurons, but only at
submaximal concentrations of ATP, has also been re-
ported (De Roo et al., 2003). In the same cells, proges-
terone also rapidly and reversibly potentiates submaxi-
mal, but not saturating, responses evoked by ATP. A
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similar effect was observed in cells expressing recombi-
nant P2X2Rs, but not P2X1Rs, P2X3Rs, or P2X4Rs,
indicating the receptor specificity of steroid action (De
Roo et al., 2010). A nongenomic inhibitory effect of tes-
tosterone on P2XR function in isolated rat urinary blad-
der has also been observed (Hall et al., 2002).

It has also been reported that the neurosteroid alfax-
alone potentiates the ATP-evoked P2X4R currents
within 60 s, independent of the expression system used
(HEK293 or oocytes). Likewise, allopregnanolone and
3�,21-dihydroxy-5�-pregnan-20-one potentiates the ATP-
gated currents, but less effectively. In contrast, 0.3 to 10
�M pregnanolone, but not its sulfated derivative, inhibits
the ATP-gated currents by approximately 40% in both cell
types. Gonadal steroids 17�-estradiol and progesterone
were inactive, revealing explicit structural requirements
for steroid action on receptor function. Alfaxalone or 3�,21-
dihydroxy-5�-pregnan-20-one gated P2X4R at concentra-
tions 30- to 100-fold larger than those required to modulate
the receptor, eliciting suramin and brilliant blue-sensitive
currents, and potentiated the P2X4R more than 10-fold
over the effect of 10 �M zinc (Codocedo et al., 2009).

Adrenal steroid hormones also rapidly influence P2XR
function. In mouse HT4 neuroblastoma cells, the gluco-
corticoids corticosterone and cortisol and the synthetic
glucocorticoid hormone dexamethasone inhibit P2XR-
mediated calcium influx through a membrane-initiated,
nongenomic pathway (Han et al., 2005). A rapid non-
genomic effect of dexamethasone on the ATP-induced
changes in cytosolic calcium was also observed in co-
chlear spiral ganglion neurons (Yukawa et al., 2005).
Rapid inhibition of the ATP-induced currents and cal-
cium signals by corticosterone was also observed in rat
DRG neurons (Liu et al., 2008b, 2010).

H. Other Modulators

1. Reactive Oxygen Species. Reactive oxygen species
(ROS), including superoxide and other oxygen ions, free
radicals and peroxides are chemically unstable, highly
reactive molecules known to induce cell damage via ox-
idative stress. Hydrogen peroxide is a prominent endog-
enous ROS that can significantly increase as a result of
several pathophysiological conditions. In a recent report,
the modulation of P2X2R function by hydrogen peroxide,
mercury, and the mitochondrial stress inducers myx-
othiazol and rotenone was described. Intracellular Cys430

was identified as a redox sensor for this receptor. It is
noteworthy that the ATP-evoked currents in P2X4R were
slightly inhibited by hydrogen peroxide, suggesting an op-
posite redox modulation that remains to be identified (Cod-
dou et al., 2009). These novel findings indicate that P2XRs
can modify their activity depending on the redox state of
the cell. Future experiments are required to determine
whether other P2XRs are also modulated by ROS.

2. Carbon Monoxide. Carbon monoxide (CO), the
metabolic product of heme oxygenases, is a potent mod-
ulator of a wide variety of physiological processes. It has

been reported that CO also potentiates ATP-evoked cur-
rents in cells that express the P2X2R but was ineffective
in cells expressing either the P2X3R or the heteromeric
P2X2/3R. Moreover, these authors found a small but
significant inhibition of the ATP-evoked currents in
P2X4R-expressing cells (Wilkinson et al., 2009). These
results suggest that P2X2R and P2X4R may have an
allosteric site for CO or that this gas exerts its actions
through indirect mechanisms. In this regard, the effects
of CO in P2X2R and P2X4R are similar to those of ROS
and mitochondrial stress inducers (Coddou et al., 2009).
Therefore, it is plausible that CO can bind to mitochon-
drial complexes and stimulate ROS production, a mech-
anism that has been shown to modulate L-type Cav
channels (Peers et al., 2009).

3. Cibacron Blue 3GA. The putative nonselective
P2R antagonist Cibacron blue (the purified ortho-iso-
mer) (Ralevic and Burnstock, 1998) acts as an allosteric
regulator of P2XRs at concentrations lower than that
required for P2R antagonism. One study described its
potentiating activity on rP2X4R. Pretreatment with
Cibacron blue mediated a 4-fold increase in the potency
of ATP (EC50, 3.3 �M) without affecting the maximum
response (Miller et al., 1998). Electrophysiological and
calcium influx data also suggest that Cibacron blue
functions as a positive allosteric modulator of hP2X3R
activity and may also contribute to the increasing the
rate of receptor recovery from agonist-induced desensi-
tization. These effects were independent of the agonist
used to activate receptor and were concentration-depen-
dent with an EC50 of 1.4 �M (Alexander et al., 1999).
Cibacron blue also potentiates BzATP-induced nocicep-
tion, probably acting through P2X3R and P2X2/3R (Jar-
vis et al., 2001). However, the effects of Cibacron blue on
recombinant P2X2/3R have not been tested.

4. Propofol, Ketamine, and Toluene. Propofol, an in-
travenous anesthetic that is widely used clinically, po-
tentiates the activity of P2X4Rs expressed in HEK293
cells and has no effect on P2X2Rs or P2X2/3Rs (Tomioka
et al., 2000; Davies et al., 2005b). Propofol also potenti-
ates native P2X7Rs expressed in microglia, an effect
that was mimicked by two other clinically relevant in-
travenous anesthetics, thiopental and ketamine (Na-
kanishi et al., 2007). In another study, neither ketamine
nor propofol affected P2X2Rs (Furuya et al., 1999). Tol-
uene, an abused organic solvent, potentiates the ATP-
evoked P2X2R and P2X4R currents, as well as P2X4/6R
and P2X2/3R currents, and inhibits P2X3R currents
(Woodward et al., 2004). There is no information re-
garding the residues involved in the actions of these
compounds.

5. Tetramethylpyrasine. This is an alkaloid used in
traditional Chinese medicine as an analgesic for injury
and dysmenorrhea (Liang et al., 2005). It inhibits the
effects of nucleotides at native P2X3Rs responsible for
the primary afferent transmission of neuropathic pain
states, presumably acting as an allosteric modulator by
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binding at an unidentified extracellular domain (Gao et
al., 2008).

V. Future Directions

Although it took 7 years to get the zP2X4.1R crystal
(Silberberg and Swartz, 2009), it is still reasonable to
suggest that one of the P2XRs will be crystallized in the
presence of agonist, which will provide a major advance
in understanding the binding domain and gating mech-
anisms of these receptors. In the absence of such data,
additional structural based modeling could provide a
better understanding of the possible organization of or-
thosteric binding sites and development of subunit spe-
cific antagonists to be used in further studies and ther-
apeutics and the gating of the channel pore. Further
studies should also help in understanding how changes
in intracellular receptor domains are transmitted to the
rest of the channel, including changes caused by the
association of P2XRs with numerous interacting pro-
teins. Future studies could also clarify how activation of
numerous signaling pathways by calcium influx and the
cross-talk with G protein-coupled receptors affects P2XR
function. In addition to structural and mathematical
modeling, voltage-clamp fluorometry and other tech-
niques used to examine the changes in accessibility of
the protein domains could provide some temporal reso-
lution of the conformational changes caused by the bind-
ing of an agonist in the presence and absence of alloste-
ric modulators.

Allosteric modulators constitute a valuable alterna-
tive for future drug design, especially for receptor-spe-
cific drugs. The close topological location of the trace
metal coordination amino acid residues to the or-
thosteric ATP sites also provides clues for further struc-
tural modeling and investigation into the actions of met-
als in the receptor ectodomain. Trace metals can be
released to the synaptic cleft and exert effects on signal-
ing, altering neuronal excitability, but further studies
are needed to clarify the physiological conditions for the
action of these metals on P2XR function in vivo. The
finding that other endogenous compounds, such as pro-
tons, ROS, or neurosteroids, modulate P2XR activity
also places allosteric modulation in a more physiological/
pathophysiological context. For example, changes in cel-
lular pH caused by ischemia could affect P2X3R activity.
Furthermore, an intracellular redox sensor for the
P2X2R that modulates channel activity could play an
important role in oxidative stress or the response to
abundant ROS production by either pathophysiological
conditions or drugs. Likewise, the discovery that P2XRs
are modulated by neurosteroids in a positive and nega-
tive manner raises the possibility that P2XR signaling
and brain excitability could change with variations in
steroid levels caused by physiological and pathophysio-
logical conditions as reproductive cycles and emotional
and/or endocrine state of the body. These observations

provide a basis for further studies regarding the depen-
dence of the activity of a particular receptor on the
metabolic state of cells, tissues, and organs.

VI. Conclusions

The recent 3.5-Å crystallography of zP2X4.1R in a
closed state is a remarkable breakthrough in the puri-
nergic field. Not only has it provided a detailed descrip-
tion of P2XR tertiary and quaternary structure but also
it confirmed the assumption of the trimeric nature of
P2XRs raised from pioneer biochemical, functional and
microscopy studies. The identity of the 10 highly con-
served ectodomain cysteines, plus the correct assign-
ment of the five possible sulfhydryl bonds and their role
in the tertiary receptor folding, was established beyond
a doubt. The structure of zP2X4.1R was solved in the
absence of ATP, which limits our understanding of the
residues involved in the formation of orthosteric binding
sites and the positive and negative cooperativity with
allosteric binding sites. However, the cloning of P2X
sequences that are distantly related through phylogeny
has demonstrated that relatively few ectodomain resi-
dues are conserved across all subunits, and their impor-
tance in receptor functions has been shown in mutagen-
esis studies. As with other ligand-gated channels,
P2XRs have numerous regulatory sites in both the ex-
tra- and intracellular domains. Therefore, channel activ-
ity is multiregulated by a complex set of synapse- and/or
paracrine-derived native agents, as well as intracellular
metabolites. In contrast to the ATP binding sites, the
nonconserved residues seem to play a critical role in
allosteric modulation of these channels by trace metals,
divalent cations, and protons, which explains the recep-
tor specificity of the actions of these molecules. P2XRs
are also modulated by membrane lipids, kinases, and
ROS acting intracellularly. Drugs also modify ATP sig-
naling. A prominent example is the positive and potent
modulator role of IVM on P2X4R that probably occurs
within the TM receptor domain and is currently used as
a pharmacological criterion to characterize the involve-
ment of this particular receptor in cellular functions.
Thus, the P2XR affinity for ATP and/or the changes in
the maximal currents is not only determined by the
ligand concentration but also depends on the availability
of these regulators in the receptor milieu. The current
information regarding the residues involved in or-
thosteric and allosteric modulation combined with the
channel structure provided by crystallization will lead to
a better understanding of the structure-activity relation-
ships that govern these processes.
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P (2008b) Direct modulation of P2X1 receptor-channels by the lipid phosphatidyl-
inositol 4,5-bisphosphate. Mol Pharmacol 74:785–792.

Bianchi BR, Lynch KJ, Touma E, Niforatos W, Burgard EC, Alexander KM, Park
HS, Yu H, Metzger R, Kowaluk E, et al. (1999) Pharmacological characterization
of recombinant human and rat P2X receptor subtypes. Eur J Pharmacol 376:127–
138.

Bie BH, Zhang YH, and Zhao ZQ (2009) Inhibition of P2X receptor-mediated inward
current by protein kinase C in small-diameter dorsal root ganglion neurons of
adult rats. Neurosci Bull 25:179–186.

Birder LA, Ruan HZ, Chopra B, Xiang Z, Barrick S, Buffington CA, Roppolo JR, Ford
AP, de Groat WC, and Burnstock G (2004) Alterations in P2X and P2Y purinergic
receptor expression in urinary bladder from normal cats and cats with interstitial
cystitis. Am J Physiol Renal Physiol 287:F1084–F1091.
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Meyer MP, Gröschel-Stewart U, Robson T, and Burnstock G (1999) Expression of two
ATP-gated ion channels, P2X5 and P2X6, in developing chick skeletal muscle. Dev
Dyn 216:442–449.

Michel AD, Chambers LJ, Clay WC, Condreay JP, Walter DS, and Chessell IP (2007)
Direct labelling of the human P2X7 receptor and identification of positive and
negative cooperativity of binding. Br J Pharmacol 151:103–114.

Michel AD, Chambers LJ, and Walter DS (2008a) Negative and positive allosteric
modulators of the P2X(7) receptor. Br J Pharmacol 153:737–750.

Michel AD, Chessell IP, and Humphrey PP (1999) Ionic effects on human recombi-
nant P2X7 receptor function. Naunyn Schmiedebergs Arch Pharmacol 359:102–
109.

Michel AD, Clay WC, Ng SW, Roman S, Thompson K, Condreay JP, Hall M,
Holbrook J, Livermore D, and Senger S (2008b) Identification of regions of the
P2X(7) receptor that contribute to human and rat species differences in antagonist
effects. Br J Pharmacol 155:738–751.

Michel AD and Fonfria E (2007) Agonist potency at P2X7 receptors is modulated by
structurally diverse lipids. Br J Pharmacol 152:523–537.

Michel AD, Grahames CB, and Humphrey PP (1996) Functional characterisation of
P2 purinoceptors in PC12 cells by measurement of radiolabelled calcium influx.
Naunyn Schmiedebergs Arch Pharmacol 354:562–571.

Michel AD, Kaur R, Chessell IP, and Humphrey PP (2000) Antagonist effects on
human P2X(7) receptor-mediated cellular accumulation of YO-PRO-1. Br J Phar-
macol 130:513–520.

Michel AD, Miller KJ, Lundström K, Buell GN, and Humphrey PP (1997) Radiola-
beling of the rat P2X4 purinoceptor: evidence for allosteric interactions of purino-
ceptor antagonists and monovalent cations with P2X purinoceptors. Mol Pharma-
col 51:524–532.

Michel AD, Ng SW, Roman S, Clay WC, Dean DK, and Walter DS (2009) Mechanism
of action of species-selective P2X(7) receptor antagonists. Br J Pharmacol 156:
1312–1325.

Michel AD, Xing M, and Humphrey PP (2001) Serum constituents can affect 2�- &

3�-O-(4-benzoylbenzoyl)-ATP potency at P2X(7) receptors. Br J Pharmacol 132:
1501–1508.

Migita K, Haines WR, Voigt MM, and Egan TM (2001) Polar residues of the second
transmembrane domain influence cation permeability of the ATP-gated P2X(2)
receptor. J Biol Chem 276:30934–30941.

Miller KJ, Michel AD, Chessell IP, and Humphrey PP (1998) Cibacron blue allos-
terically modulates the rat P2X4 receptor. Neuropharmacology 37:1579–1586.

Mio K, Ogura T, Yamamoto T, Hiroaki Y, Fujiyoshi Y, Kubo Y, and Sato C (2009)
Reconstruction of the P2X(2) receptor reveals a vase-shaped structure with lateral
tunnels above the membrane. Structure 17:266–275.

Miyoshi H, Yamaoka K, Urabe S, Kodama M, and Kudo Y (2010) Functional expres-
sion of purinergic P2X7 receptors in pregnant rat myometrium. Am J Physiol
Regul Integr Comp Physiol 298:R1117–R1124.
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